STUDY OF THE ELECTORAL SYSTEM AND VOTING BEHAVIOUR AT THE ELECTION COMMISSION OF INDIA

Dissertation submitted in fulfilment of the requirements for the Degree of

MASTER OF TECHNOLOGY

Computer Science with specialization in Data Analytics

By

RITIKA SINGH

Department of Computer Science

JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

(Declared Deemed to be University U/S 3 of UGC Act)

A-10, SECTOR-62, NOIDA, INDIA

May 2019

TABLE OF CONTENTS

		Page Number	•
ABSTRAC	Γ		5
ACKNOWI	LEDGEMENT		
DECLARA'	TION BY THE SCHOLAR		
SUPERVIS	OR'S CERTIFICATE		
PREFACE .	AND ACKNOWLEDGEMENT		
LIST OF SY	YMBOLS		
LIST OF FI	IGURES		
LIST OF TA	ABLES		
INTRODUC	CTION		8
CHAP	TER 1. DATA COLLECTION		
1.1	SOURCE		9
1.2	SCRAPER FOR DATA COLLECTION		12
	1.2.1 SAMPLE RESULT FROM DATA SCRAPPER		14
1.3	ECI OPEN SOURCE DATA		15
	1.3.1 CODE FOR WEB CRAWLER		16
	1.3.2 SAMPLE OUTPUT OF STATISTICAL REPORT	Γ	20
1.4	PDF TO EXCEL FOR DATABASE		
	1.4.1 CODE FOR CONVERTER		21
	1.4.2 SAMPLE OUTPUT		22
1.5	DATABASES IN ANACONDA		22
СНАР	ΓER 2. APPLICATION OF TABLEAU		23
2.1 1	DATA EXTRACTION		24
2.2 1	DATA VISUALIZATION		25
2	.2.1 ANALYSIS OF POLITICAL PARTIES'		
_	PERFORMANCE OVER YEARS 1951-2019		27
2	2.2.2 ANALYSIS OF VOTER TURNOUT OVER		

YEARS 1951-2019	
2.2.3 VOTER TURN-OUT FORECAST V/S	39
ACTUAL VOTER TURN-OUT 2019	
2.2.4 ANALYSIS OF WOMEN EMPOWERMENT	41
2.2.5 ANALYSIS CANDIDATES FROM ALL PARTIES	44
OVER YEARS	
2.2.6 ANALYSIS OF VOTES PERCENTAGE ACROSS YEARS	47
CHAPTER 3. IMPLEMENTATION OF DEEP LI	EARNING
ALGORITHMS	
3.1 RANDOM FOREST ALGORITHM	50
CHAPTER 4. BAGGING OF DATA	52
4.1 BAGGING CLASSIFIER: BJP Sentiment prediction	60
4.2 BAGGING CLASSIFIER: Congress Sentiment prediction	61
CHAPTER 5. BOOSTING OF DATA	63
5.1 RESULT FOR BJP	68
5.2 RESULT FOR CONGRESS	70
CHAPTER 6. MULTI - CLASS TEXT CLASSIFICATION WIT	TH LSTM
6.1 LSTM MODELING	72
6.2 TRAN TEST SPLIT	75
6.3 MAPPING OF ACCURACY AND DATA LOSS	78
6.4 TEST WITH NEW DATA	80
CHAPTER 7. REGRESSION ALGORITHMS	
7.1 RIDGE REGRESSION	81
7.2 SIMPLE LINEAR REGRESSION AND	83
LASSO REGRESSION MODELS	

СНАРТ	TER 8. CLASSIFICATION ALGORITHMS	87			
СНАРТ	TER 9. CLUSTERING	89			
СНАРТ	CHAPTER 10. ADVANCEMENT OF AI IN POLITICS				
10.1	ENGAGING VOTERS	91			
10.2	IDEOLOGICAL POLITICAL GROUPS MOVING	93			
	AWAY FROM TRADITIONAL METHODS				
10.3	ELECTION DATA ANALYSIS	95			
10.4	POLITICAL ORIENTATION PREDICTION	100			
СНАРТ	TER 11. SENTIMENT ANALYSIS				
11.1	ELECTIONS AND SOCIAL MEDIA	109			
11.2	DATA GATHERED	111			
11.3	TRAINING THE DATASET USING MACHINE LEARNING	115			
11.4	APPLICATION OF MACHINE LEARNING TO PRESENT SENT	TIMENT			
P	LOTS OF THE LIVE STREAMING DATA	119			
11.5	APPLICATION OF LOGISTIC REGRESSION AND MULTI-NOM	IAL			
	NAIVE BAYES	122			
11.6	THE FUTURE OF DATA ANALYTICS IN ELECTIONS	126			
CHAPTER 12. PREDICTIVE ANALYTICS					
12.1	PREDICTING SENTIMENT WITH TEXT FEATURES	127			
12	2.1.1 DATA LOADING	127			
12	2.1.2 ANALYSIS OF THE TEXTS IN THE DATA TO BE USED	127			
12	2.1.3 TEXT CLEANING	135			
12	2.1.4 FINDING THE FREQUENCY OF WORDS	137			
	UPON DATA CLEANING				
12	2.1.5 CREATING TEST DATA	138			
12	2.1.6 HYPERPARAMETER TUNING AND CROSS-VALIDATION	139			
12	2.1.7 CLASSIFIERS	142			

12.1.8 COUNTVECTORIZER	
12.1.9 LOGISTIC REGRESSION	143
12.1.10 COMPARISON OF MULTINOMIAL NB AND LOGISTIC	
REGRESSION	144
12.1.11 Word2Vec	145
12.1.12 ASSESSMENT MEASUREMENTS	148
12.2 TESTING OF THE NEW MODEL DEVELOPED	149
12.3 USE THE EMBEDDING LAYER OF KERAS TO CREATE	WORI
EMBEDDINGS FROM THE TRAINING DATA	151
12.4 CONCLUSION FOR THE MODEL DEVELOPED	151
CHAPTER 13. NETWORK BASED CLASSIFICATION	152
13.1 CONVERTING THE TARGET CLASSES TO NUMBERS AND SPL	ITTING
OFF VALIDATION DATA	154
13.2 MODELING	155
13.3 ACCURACY OF MODEL FOR WORD EMBEDDINGS	156
CHAPTER 14. CONCLUSION	157
CHAPTER 15. REFERENCES	159
CHAPTER 16. SYNOPSIS	164

DECLARATION BY THE SCHOLAR

I hereby declare that the work reported in the MTech. Dissertation entitled "STUDY OF THE ELECTORAL SYSTEM AND VOTING BEHAVIOUR AT THE ELECTION COMMISSION OF INDIA" submitted at Jaypee Institute of Information Technology, Noida, India, is an authentic record of my work carried out under the supervision of Dr. Satish Chandra. I have not submitted this work elsewhere for any other degree or diploma. I am fully responsible for the contents of my MTech Thesis.

(Ritika Singh)

Department of Computer Science

Jaypee Institute of Information Technology, Noida, India

20-05-2019

SUPERVISOR'S CERTIFICATE

This is to certify that the work reported in the M. Tech Dissertation entitled "STUDY OF THE

ELECTORAL SYSTEM AND VOTING BEHAVIOUR AT THE ELECTION

COMMISSION OF INDIA", submitted by Ritika Singh at Jaypee Institute of

Information Technology, Noida, India, is a bonafide record of her original work carried

out under my supervision. This work has not been submitted elsewhere for any other degree or

diploma.

(Dr. Satish Chandra)

Associate Professor

20-05-2019

ABSTRACT

7

My dissertation reflects my work conducted at the Election Commission of India Headquarters, New Delhi as the Statistical Expert for Lok Sabha Elections 2019.

This dissertation explores the first election to use big data analytics. The focus is to establish an understanding of the impact of analytics and machine learning algorithms amongst both voters and candidates alike. In the progressing general decisions 2019 in India, innovation hosts made it simpler for political gatherings to measure the temperament of the voters and put their best message forward. Ideological groups are utilizing huge information examination to assemble bits of knowledge into voter inclinations dependent on their financial status, rank, nearby issues, and different parameters. In light of the voter conclusion and fragments, modified decision crusades with the most significant messages and recordings are being made and pitched to the particular target gatherings. When the crusade is propelled, information is assembled to dissect its viability and change it further as indicated by the reaction it creates.

KEYWORDS

sentiment analysis, artificial neural networks, feed-forward back propagation neural networks, opinion mining, social media platforms, Internet, organizations, python library, TextBlob, twitter, Facebook, news Websites, ANN, min-max approach, prediction accuracy, backpropagation, data mining, feedforward neural nets, Internet, minimax techniques, Python, sentiment analysis, social networking (online)

INTRODUCTION

The Election Commission of India is a self-sufficient sacred specialist in charge of controlling race forms in India. The body manages decisions to the Lok Sabha, Rajya Sabha, state Legislative Assemblies, state administrative Councils, and the workplaces of the President and Vice President of the nation.

Over the decades, the result of the political elections was analyzed and predicted by pundits and political analysts. These predictions were often biased as they were produced using the person's personal experiences and had traces of mere intuitions. Keeping the effect of personal biases in mind nowadays, the trends have shifted to more of scientific approaches. The election results, voter turnout percentages and party performances are now predicted statistically using a poll. Sample of voter data is collected to develop test cases and from that the result of the elections are extrapolated.

Political races are known to be hard to anticipate, because of their results being the result of an assortment of components. Just in this present decade have purported "surveyors" or analysts picked up the capacity to precisely foresee Lok Sabha decisions. Given the limit of AI to learn associations between components, we apply a combination of AI strategies to the errand of envisioning race results from money related and factual data. All the more explicitly, we attempt to foresee and clarify the outcomes from the Lok Sabha 1951-2014 decisions, and to assess the impact of different factors on their results.

From this information, we extract different statistic and financial highlights, for example, PC Number name, PC Type, Candidate Name, Candidate Sex, Candidate Category, Candidate Age, Party Abbreviation, Total Votes Polled and Position. In spite of the fact that the information we wish to utilize as of now exists, it is spread crosswise over numerous documents and arrangements. We in this manner perform critical preprocessing and solidification arranges so as to acquire our last informational index.

This report incorporates work accomplished for the Lok Sabha races led by ECI crosswise over 17 Lok Sabha Elections from 1951-2019. The data used was scraped from approved interior sources, converted to a database reasonable for long run. Enormous information and investigation

additionally helped drive the battle's advertisement purchasing choices, which brought about obtaining promotions amid offbeat programming and schedule vacancies. Here again the group depended on big data analytics, enormous information examination instead of on outside media specialists and specialists to choose where and when advertisements should run. At last, this data-driven approach demonstrated fruitful in getting the messages out to the focused-on watchers and driving the turnout in states.

The expression "Big Data" came into spotlight when conventional database devices like "RDBMS" become unable to deal with huge, unstructured information which is described by high volume, speed, and assortment. Separating needful data from this huge information is one of the primary difficulties for the two experts and database. Consistently around 2.5 quintillion bytes of information are made. With this bounty of information, we can without much of a stretch create some meaningful data by applying reasonable strategies to the informational index. Decisions are held all through the world covering practically all the whole countries. The decision is a procedure by which general public can pick their delegate by throwing their votes. Each country has various terms and standards for the election procedure. Social Media is an online application stage which encourages interaction, joint effort, and sharing of substance. Both open, just as political pioneers, utilize internet-based life like Twitter, Facebook, and Google+ and so on for the battle, discourse, forecast, and investigation of the race. These web based life particularly Twitter and Facebook create a tremendous measure of crude information which is extremely helpful for both ideological groups and overall population especially amid race times. Consequently, ideological groups utilize web-based life since Politicians with higher online life commitment got moderately more votes inside most ideological groups and furthermore it builds their battle since fan base of driving political pioneers expanded with the beginning of their advanced crusade during the decisions. So Political gatherings, even in creating nations, try cognizant endeavors to oversee internet-based life appropriately amid their crusading stage. Significance of web-based life comes into the spotlight when Barrack Obama won 2008 Presidential decision of America by utilizing web-based life (Twitter) in his battling.

DATA COLLECTION

A critical component to great research is the precise and effective gathering and readiness of data for analysis. Scholastic specialists have to spend exorbitant time cleaning data and training data models preventing inclusion of garbage data and recording mistakes. The execution of straightforward rules dependent on procedures utilized by expert information supervisory groups will spare analysts time and cash and result in an informational collection more qualified to address investigate questions. Since Microsoft Excel is regularly utilized by analysts to gather information, explicit methods that can be actualized in Excel are exhibited.

For our dataset, we utilize an assortment of socio-economic information acquired from data.gov.in, www.nic.in, <a href="http://eci.gov.in/statistical-report/statisti

We presently examine the source of our data inside and out. To acquire our information, we utilize an information gathering highlight to crawl and scrape data and APIs, which enables the access of different datasets without a moment's delay and their downloading as a bundle. Through this strategy, we downloaded the crude information for the 1951-2014 years. All the more explicitly, we download informational indexes relating to the significant subjective classes of public sentiments.

In the wake of acquiring the crude informational collections as our basic raw datasets, we start the way toward cleaning and consolidating them. To do as such, we previously changed over the informational collections to csv documents. Afterwards, we make a technique that joins numerous different csv records into a solitary Pandas data frame. Following this, we use Pandas to

expel numerous repetitive sections, which compare to highlights, for example, deface gins of mistake, definitions of passages in substitute units or rates, and segments containing generally or every unfilled passage. Following this, we join the records and match the information passages with their relating region level outcomes. We treat missing qualities as NaNs in Pandas for the motivations behind our analysis.

SOURCE

Figure 2.1: Source of data extraction

SCRAPPER FOR THE DATA COLLECTION

```
import re
         import urllib
         from bashlib import sha256
         from lami.html import parse
In [2]: def get(url):
""Retrieves a URL as an Lumi tree, cached where possible""
             filename = '.cache.' + sha256(url).hexdigest()
             if not os.path.exists(filename);
                 html = urllib.urlretrieve(url, filename)
             return parse(filename)
In [3]: def constituencies(url):
              "Yields dicts with state, state_code, constituency, constituency_code.""
             tree = get(url)
             statecode = {state:code for code, state in statecode}
             # Constituency codes are in hidden input fields. Format is:
              # code, constituency; code, constituency; ...
             for el im tree.findall(',//input[Fid]'):
    id = el.get('id', '').strip()
    if id.startswith('BdnFld'):
                      state = id.replace('HdnFid', '')
                      for row in el.get('value').aplit(';');
                          row = row.strip()
                          if rows
                              cells = row.split(',')
                              yield (
                                   state': state,
                                   'statecode'; statecode.get(state),
                                  'constituency': cells[1],
'constituencycode': cells[0]
In [4]: def results(url):
               "For a constituency URL, yields dicts with candidate, party, votes.""
              tree = get(url)
              # Results are inside a table in a <div id="div1">
              for row in tree.findall('.//*[#id="divl"]//tr'):
                  cells = row.findall('td')
                  if len(cells) >= 3:
                      yield (
                           'candidate': cells[0].text.strip(),
                           party'r cells[1].text.strip(),
                           votes': cells[2].text.strip(),
In [7]: dataset = []
         for place in constituencies('http://eciresults.mic.in/Constituencywise$2653.htm'):
              url = "http://eciresults.nic.in/Constituencywise(:s)(:s).htm?ac=(:s)".format(
                  place['statecode'], place['constituencycode'], place['constituencycode'])
              # print 'Debug: scraping', place['state'], place['constituency']
              for result in results(url):
                  result.update(place)
                  dataset.append(result)
         with open('2013-result.txt', 'wb') as out:
    fields = ['state', 'constituency', 'votes', 'candidate', 'party']
    out.write('\t'.join(fields) + '\n')
              for row in dataset;
                  out.write('\t'.join(row[f] for f in fields).encode('utf-8') + '\n')
```

In [1]: import os

SAMPLE RESULT FROM DATA SCRAPPER

Rhotion Commission of India - General Riction, 1957 (2nd LOK SABIIA) Florier Communication in Communication (Communication Communication Comm STATISTICAL REPORT - Volume I LIST OF PARTICIPATING POLITICAL PARTIES (National and State Abstracts & Detailed Results) CONTENTS PHENTYPE ARRESPONDED SHREY STREET SISTINGUE HOMES Propries ALE INTRA FORGET WAS FOR EASIER fan-t DESCRIPTION OF A DO. Library Porcepting Political Forces and Attroviories 140 WINDOWSKI PORTATION MININGSOCIALIST PARTY 2. Number and Types of Consiliproxim-OTHER STATE PARENT 4 September 11 management 1. (904) t. THE MINERAL MACALMANN 4. Storet Boston 7. 10 1. HMS CANALISMES MERCEN It Veter Demost and Policy Stations THE THEATWARD CONTRACTOR LINGUISON PRICTY 6. Number of Caralithus per Courtmency 11-124 PROPERTY OF STREET, SANS T. Number of Capitalisms and Forbitus of Deposits it ir MAIN PARTY PENNSTRA PRESENTACE to per-8. Let of Separated Carabidates 2.28 11. 600 HERE BUREATY CRANING THE PARK HAS BENTHATTERNARY ADE MARTENARY 8. Performance of National Perfor visitorie Others H. HIP elibros committendes promovinos 10. Septe won by Parties in States / U.T.s. PRIPENANTS 11. Season min Steen CUT abs Porter 355.35 12. Voto Pollyd by Partita - National Statistics 11 Vate Builded by Bridge or State (U.S.) m.m 14. Votes Pollorini States / UT x/by Phritis 47-44 15 Perferonsist of Womey Conditions Dr. Festiment and Warner Contractes in National Biotics on Alson Others. 17. Women Confedence 47 - 50 Part-III. 19. District Results

Figure 2.2: Result of the data collected

'spacetal residence from her but to

ECI OPEN DATA- CRAWL THE ECI ELECTION STATISTICS

```
import os
from urllib import urlopes, urlretrieve
from urlparse import urljoin
from lxml.html import parse
from os.path import exists
from subprocess import call
PDF TO TEXT - '/ust/Ritika'apps/apdf/pdffolext.exe'
base = "http://eci.nic.in/eci main1/ElectionStatistics.aspx"
tree = parse(urlopen/base))
files = set()
def download(year, link):
    pdf_file = os.path.join('raw', year + '.pdf')
    if not exists(pdf file):
        urfretrieve(urljoin(base, link), pdf_file)
    text file = pdf file replace('.pdf', '.txt')
    if not exists(text_file):
    call([PDF_TO_TEXT, '-layout', pdf_file, text_file])
files.add(year + 'txt')
for td in tree findall('/*[@id='e']/table[1]//td');
    if td.text is None:
        continue
    year - td.text.strip().split(" ')[0]
    download(year, td.find('./'a').get('href'))
import re-
import logging
   1951.ixf: ['NAME', PARTY', 'VOTES', 'W'],
'1957.ixf: ['NAME', PARTY', 'VOTES', 'W'],
'1962.ixf: ['NAME', 'SEX', PARTY', 'VOTES', 'W'],
'1967.ixf: ['NAME', 'SEX', PARTY', 'VOTES', 'W'],
'1971.ixf: ['NAME', 'SEX', PARTY', 'VOTES', 'W'],
  1971.txt: [NAME, SEX', PARTY, VOTES, %],
1977.txt: [NAME, SEX', PARTY, VOTES, %],
1980.txt: [NAME, SEX', PARTY, VOTES, %],
1984.txt: [NAME, SEX', PARTY, VOTES, %],
1989.txt: [NAME, SEX', PARTY, VOTES, %],
1989.txt: [NAME, SEX', PARTY, VOTES, %],
1992.txt: [NAME, SEX', PARTY, VOTES, %],
1998.txt: [NAME, SEX', PARTY, VOTES, %],
1998.txt: [NAME, SEX', PARTY, VOTES, %],
1999.txt: [NAME, SEX', PARTY, VOTES, %],
1999.txt: [NAME, SEX', PARTY, VOTES, %],
1999.txt: [NAME, SEX', PARTY, VOTES, %],
    '2004.ixi': ['NAME', 'SEX', 'AGE', 'CATEGORY', 'PARTY', 'GENERAL VOTES', 'POSTAL VOTES', 'VOTES'],
2009.br': [#, NAME, 'SEX, 'AGE', 'CATEGORY', 'PARTY', 'GENERAL VOTES', 'POSTAL VOTES', 'VOTES', '% ELECTORS', '% VOTES'],
'2014.br': [NAME, 'SEX, 'AGE, 'CATEGORY', 'PARTY', 'GENERAL VOTES', 'POSTAL VOTES', 'VOTES'],
'2019.br': [NAME, 'SEX, 'AGE', 'CATEGORY', 'PARTY', 'GENERAL VOTES', 'POSTAL VOTES', 'VOTES'],
```

```
def old text parse(filename):
  if filename.startswith('1'):
    re state = re.compile(r'^{(25,)}[A-Za-z].*')
    re electors = re.compile(r'ELECTORS *: *(\d+)')
  else:
    re state = re.compile(r'^[A-Z][A-Za-z\&]+$')
    re electors = re.compile(r'Total Electors *(\d+)(.*)')
  re constituency = re.compile(r'Constituency *:? *(\d+) *\.? *(.*)', re.IGNORECASE)
  re name = re.compile(r' \wedge d + * \wedge *')
  re scst = re.compile(r' *\((SC|ST)\)')
  fields = fieldlist[filename]
  results, electors = [], \{\}
  state, constituency = None, None
  for ln, line in enumerate(open(filename)):
     match = re constituency.match(line)
    if match:
       constituency = match.group(2).split(' ')[0].upper()
       constituency = re_scst.sub(", constituency)
       continue
    match = re state.match(line)
    if match:
       state = line.strip().upper()
       continue
    match = re electors.match(line)
    if match:
       electors[state, constituency] = match.group(1)
       continue
     parts = re.split(r' +', line.strip())
     if len(parts) == len(fields):
       row = dict(zip(fields, parts))
     elif len(parts) == 1:
       row['NAME'] = row['NAME'] + ' ' + line.strip()
       continue
     else:
       logging.warn('%s:%d: %d parts, not %d: %s',
                filename, ln + 1, len(parts), len(fields), line)
       continue
    row['STATE'] = state
    row['PC'] = constituency
    row['NAME'] = re name.sub(", row['NAME'])
     results.append(row)
```

```
results = pd.DataFrame(results).set_index(['STATE', 'PC'])
   results["YEAR"] = filename.split(".")[0]
   results['ELECTORS'] = pd.Series(electors)
   if '%' in results:
     del results[%]
   return results.reset_index()
logging.basicConfig(level=logging.INFO)
results = []
for filename in sorted(fieldlist):
  results.append(old_text_parse(filename))
results - pd.concai(results, ignore_index-True)['YEAR STATE PC NAME SEX PARTY AGE CATEGORY VOTES ELECTORS'.split('')]
rename - pd.read_csv('ELECTORS.csv').set_index(['Field', 'Source'])[Target']
for col in rename index.get_level_values(0).unique():
   results[col].replace(rename.tx[col].to_dict(), inplace=True)
results["VOTES"] = results["VOTES"] astype(float)
results [W] = results grouphy([YEAR', STATE', 'PC'])[VOTES'] rank(method='min', ascending=False)
results sett['YEAR', STATE', 'PC', 'VOTES'], ascending=(True, True, True, False), inplace=True)
results to_csy('parliament.csy', index=False, float_format="%.0f')
```

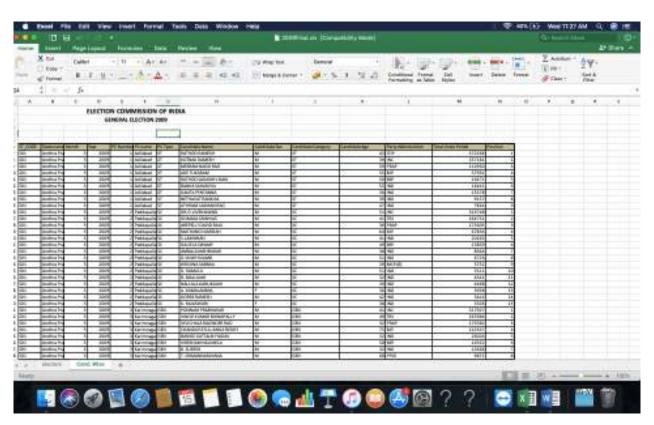


Figure 2.3: Result of candidate data scraped

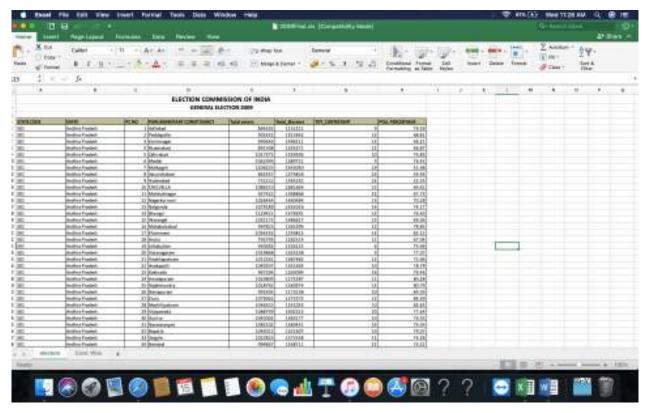


Figure 2.4: Result of electors' data scraped

PDF - EXCEL: PYTHON CODE

```
import requests
def pdfToTable (PDFfilename, apiKey, fileExt, downloadDir):
PDFfilename='/Usr/Ritika/Downloads/Reports/StatisticalReport1957.pdf'
fileData = (PDFfilename, open(PDFfilename, 'rb'))
files = {'f': fileData}
apiKey = "1782VaKz29001"
fileExt = "csv
postUrl=https://pdftables.com/api?key={0}&format={1}".format(apiKey, fileExt)
response = requests.post(postUrl, files=files)
response.raise_for_status()
downloadDir = " StatisticalReport1957. csv"
with open(downloadDir, "wb") as f:
  f.write(response.content)
```

DATABASE IN ANACONDA

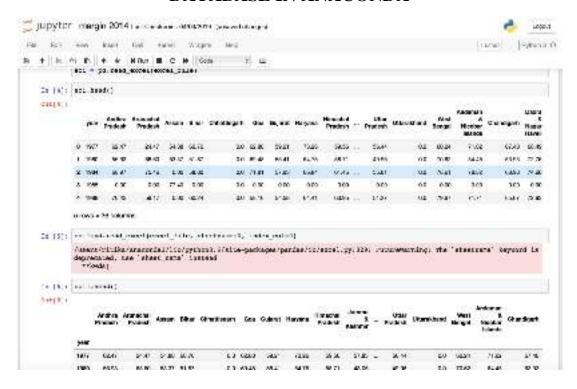


Figure 2.5: Result of the final database state-wise created in Anaconda for analysis

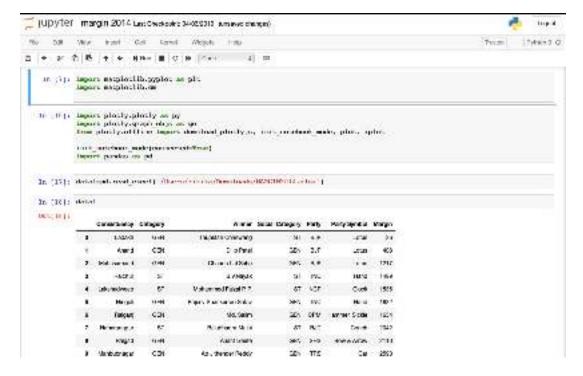


Figure 2.6: Result of the final database PC-wise created in Anaconda for analysis

TABLEAU

Data Visualization is a craft of showing the information in a way that even a non-analyst can get it. An ideal mix of tasteful components like hues, measurements, marks can make visual gems, henceforth uncovering astonishing business bits of knowledge which thusly causes organizations to settle on educated choices.

Tableau is one of the fastest evolving Business Intelligence (BI) and data visualization tool.

DATA EXTRACTION

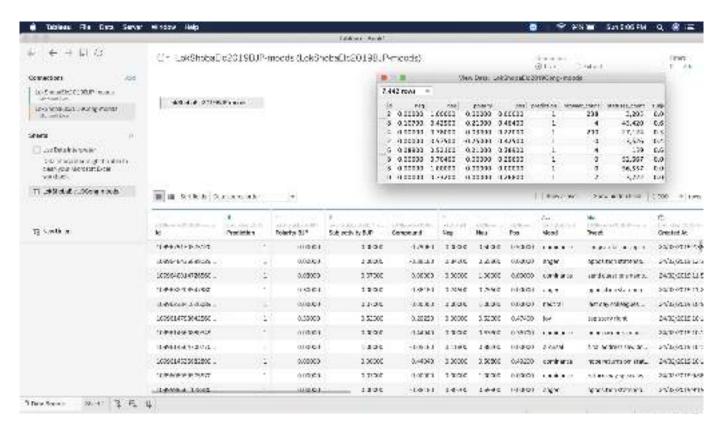


Figure 3.1: Result of data extraction in Tableau

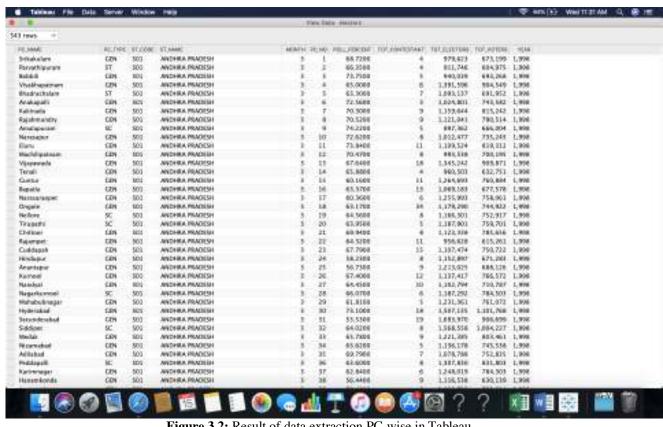
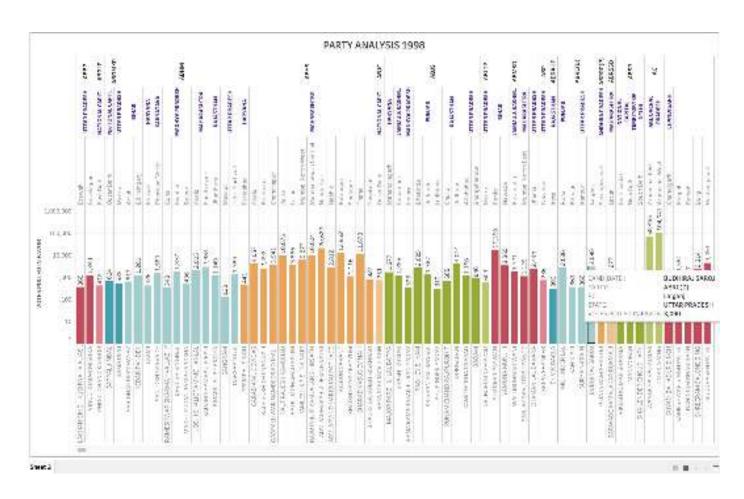


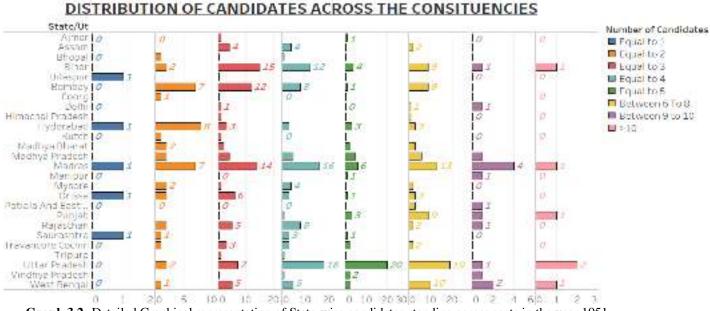
Figure 3.2: Result of data extraction PC-wise in Tableau

Figure 3.3: Result of detailed twitter extraction in Tableau

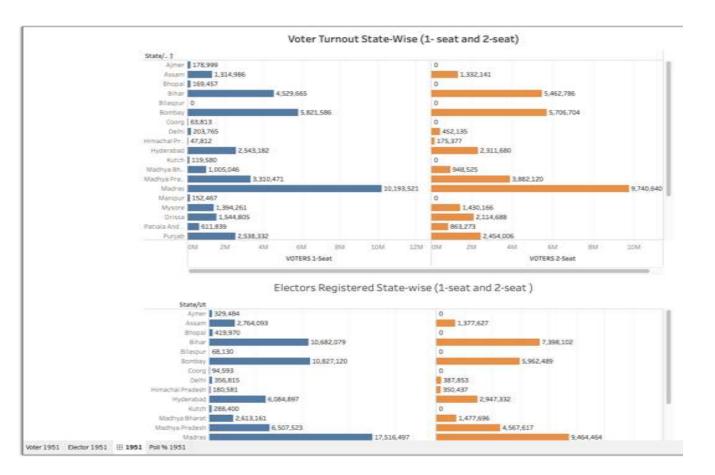
DATA VISUALIZATION



Graph 3.1: Detailed Graphical representation of PC-wise winning candidate along with the winning margin of votes



Graph 3.2: Detailed Graphical representation of State-wise candidates standing across seats in the year 1951



Graph 3.3: Detailed Graphical representation of State-wise electors registered across seats in the year 1951

WOMEN PARTICIPATION 1971

Burn of BLECTOPS and sum of yorteps for each stifflegut. Convisions distalls populativing unit they are lightly and on stifflegut, which excludes have and for all

Graph 3.4: Detailed Graphical representation of State-wise women participation in electoral in the year 1971

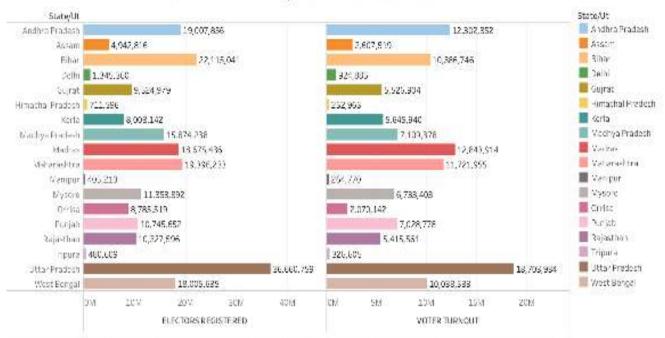
ANALYSIS OF ELECTOR REGISTRATION AND VOTER TURNOUT WITH PYTHON / R

ELECTORS REGISTERED V/S VOTER TURNOUT 1951 (1-SEAT)

Sum of ELECTOR'S 1-Suit and sum of Voters 1-Seat for each State/lit. Color shares details about State/lit.

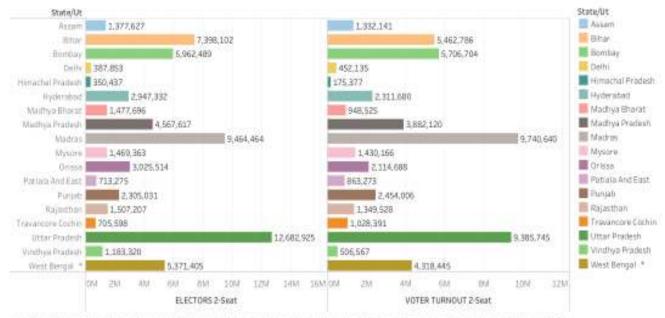
Graph 3.5: Detailed Graphical representation of State-wise elector registered and voter turnout (Seat 1) in the year 1951

ELECTORS REGISTERED V/S VOTER TURNOUT 1962



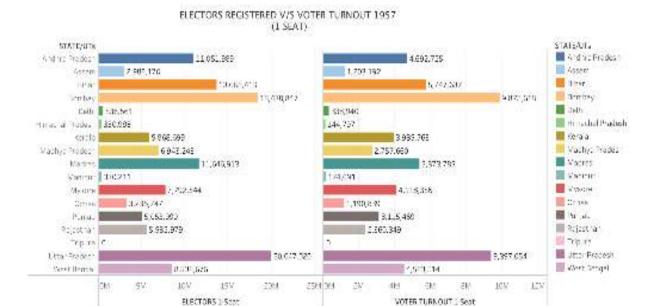
Sun of Electris and sum of Viders for each Stargus. Color's sizes devails across Stategus. The view is filtered on Stategus, whiches hales And, er Turions - 1 of 1) and 10) AL.

Graph 3.6: Detailed Graphical representation of State-wise elector registered and voter turnout in the year 1962 ELECTORS REGISTERED V/S VOTER TURNOUT 1951
(2 SEAT)



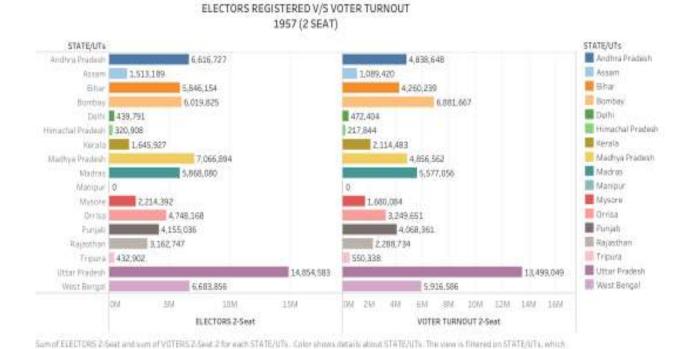
Sum of ELECTORS 2-Seat and sum of Voters 2-Seat for each State/Ut. Culor shows details about State/Ut. The view is Filtered on State/Ut, which keeps 19 of 27 members.

Graph 3.7: Detailed Graphical representation of State-wise elector registered and voter turnout (Seat 2) in the year 1951



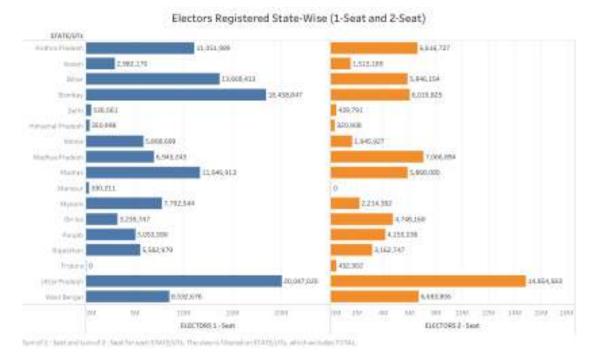
Number 1: NECSS 1-content or PETERS 1-Section each STATA. By Content on the Administrative Action of th

Graph 3.8: Detailed Graphical representation of State-wise elector registered and voter turnout (Seat 1) in the year 1957

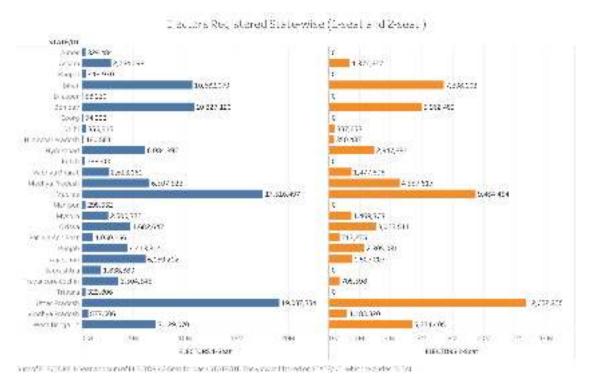


Graph 3.9: Detailed Graphical representation of State-wise elector registered and voter turnout (Seat 2) in the year 1957

michidas TAL

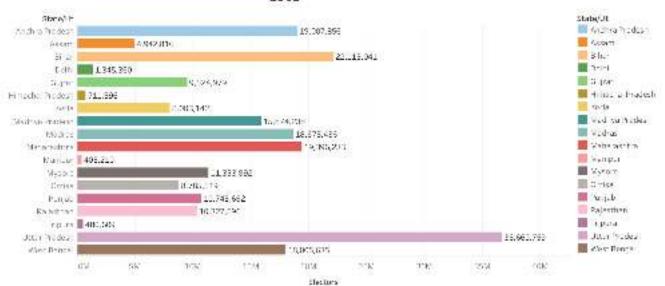


Graph 3.10: Graphical representation of State-wise elector registered on Seat 1 and Seat 2: 1951



Graph 3.11: Graphical representation of State-wise elector registered on Seat 1 and Seat 2: 1957

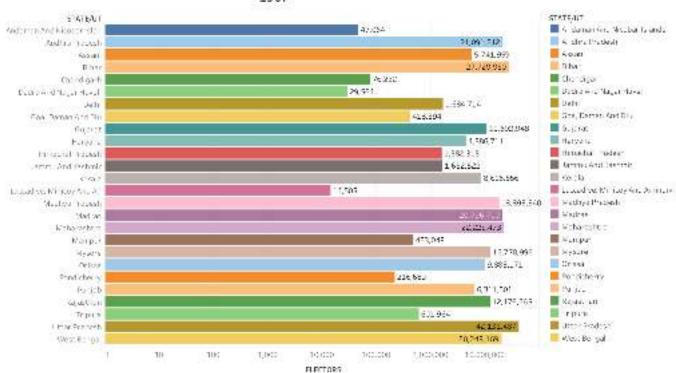
ELECTORS REGISTERED STATE-WISE 1962



Sum of Photo where each States the Color knows consilisation it States (it. The view and there is a States) in which evolutes built, or Turne it is the Fluend TOTA.

Graph 3.12: Graphical representation of State-wise elector registered 1962

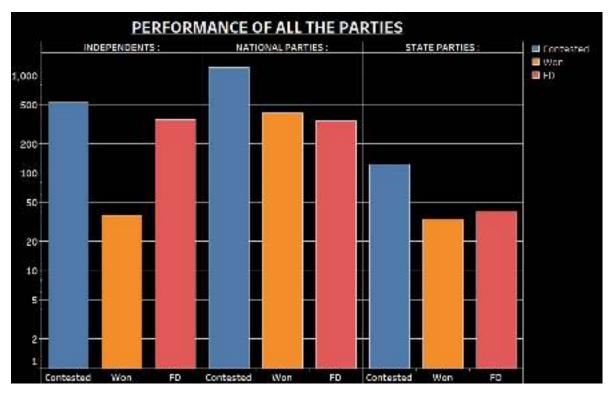
ELECTORS REGISTERED STATE-WISE 1967



Fur is: 11 CORS before \$151 July. Once convended a set of CATA-1. The service University TATA-1, when not uses (conde, Regularization A).

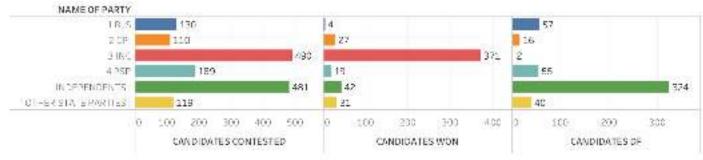
Graph 3.13: Graphical representation of State-wise elector registered 1967

ANALYSIS OF POLITICAL PARTIES' PERFORMANCE OVER YEARS 1951-2019 USING TABLEAU



Graph 3.14: Graphical comparison of candidates 1951

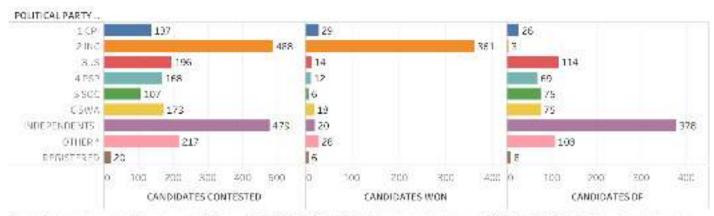
PERFORMANCE OF NATIONAL PARTIES VIA-A-VIS OTHERS 1957



Sum of Contested, sum of WCN and sum of FD for each NAME OF FARTY. Color shows details about NAME OF PARTY. The view is filtered on NAME OF FARTY, which are little NATIONAL PARTIES.

Graph 3.15: Graphical comparison of candidates 1957

PERFORMANCE OF NATIONAL PARTIES VIA-A-VIS OTHERS 1962



Sum of Contested, sum of WCN and sum of FD for each POLITICAL PARTY NAME. Color shows details about POLITICAL PARTY NAME. The view of the editor POLITICAL PARTY NAME, which excludes (Horizopcised) PART PS. and NATIONAL PARTIES.

Graph 3.16: Graphical comparison of candidates 1962

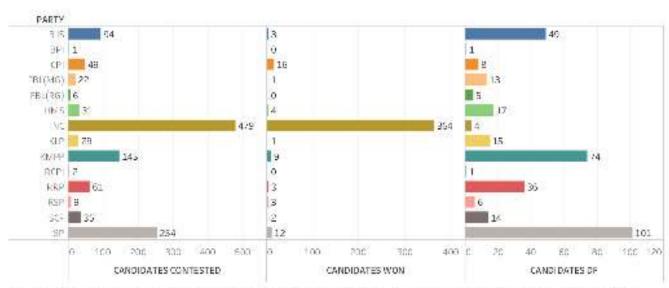
PERFORMANCE OF NATIONAL PARTIES VIA-A-VIS OTHERS 1967



Sum of Candidates Contested, sum of Candidates Ed and sum of Candidates Wonfair each Party. Color shows details about Party.

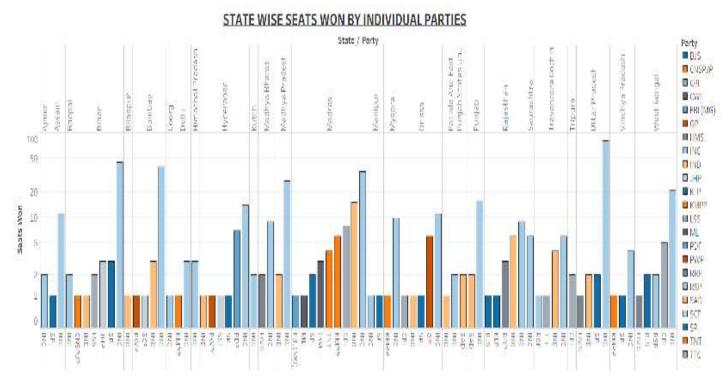
Graph 3.17: Graphical comparison of candidates 1967

PERFORMANCE OF POLITICAL PARTIES 1951



Sum of CANDIDATES CONTESTED, such of CANDIDATES WOW and sum of CANDIDATES OF for each PARTY. Color shows details about PARTY. The view is filtered on PARTY, which excludes built.

Graph 3.18: Detailed Graphical comparison of party-wise candidates 1951

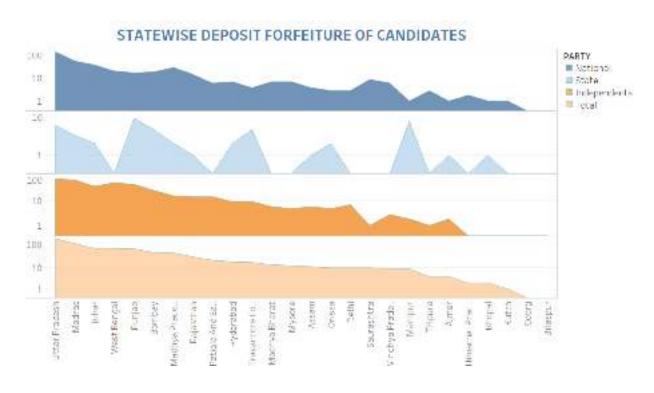


Graph 3.19: Detailed Graphical comparison of party-wise candidates 1962

ANALYSIS OF VOTER TURNOUT OVER YEARS 1951-2019 USING TABLEAU

150 | 20

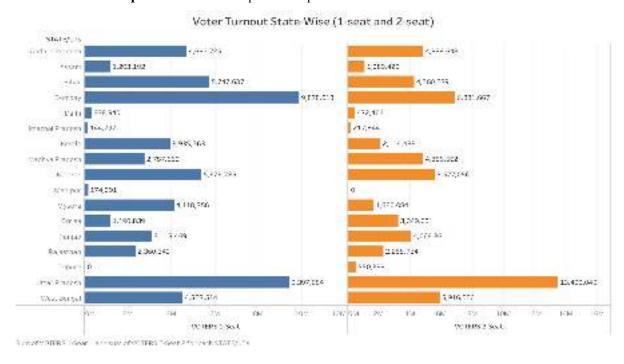
Graph 3.20: Detailed Graphical comparison of state-wise candidates 1951



Graph 3.21: Detailed Graphical comparison of state-wise candidates 1962

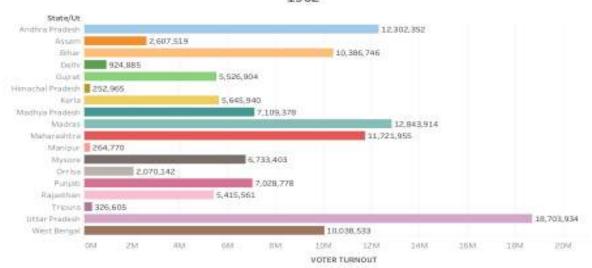
Some Values 3 Southers and to be place 3 Souths reach \$1800, Utilities were adding about \$1800, 57, which we peak in a real manufacture of the control of th

Graph 3.22: Detailed Graphical comparison of voter turnout state-wise 1951



Graph 3.23: Detailed Graphical comparison of voter turnout state-wise 1957

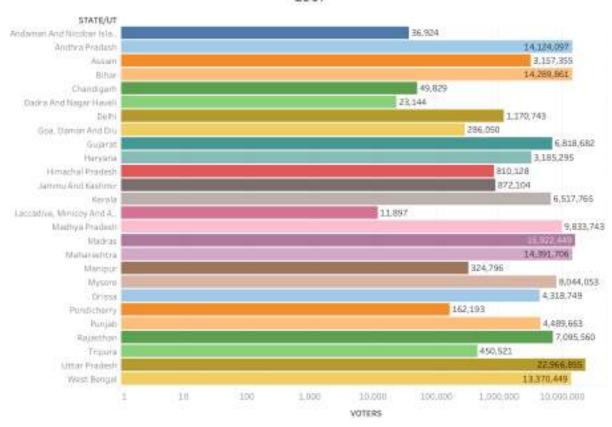
VOTER TURNOUT STATE-WISE 1962



Sum of Voters for each State/Ut. Color chows details about State/Ut. The view is Nitered on State/Ut, which excludes Null, er Turnout - 1 of 1) and TOTAL.

Graph 3.24: Detailed Graphical representation of voter turnout state-wise 1962

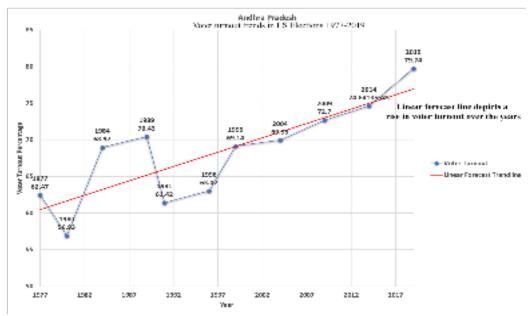
VOTER TURNOUT STATE-WISE 1967



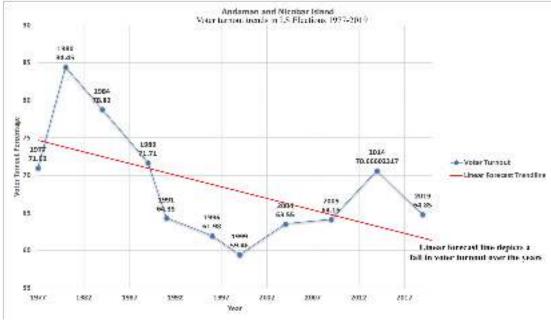
Sum of VOTERS for each STATE/UT. Color shows details about STATE/UT. The view is filtered on STATE/UT, which excludes Islands, Negaland and TOTAL.

Graph 3.25: Detailed Graphical representation of voter turnout state-wise 1967

VOTER TURNOUT FORECAST PREDICTION V/S ACTUAL FIGURES



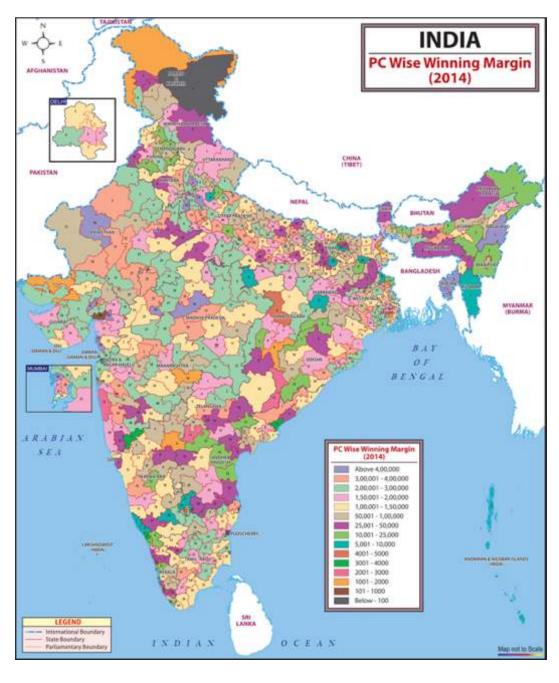
Graph 3.26: Detailed Graphical comparison of forecast line and actual figure of voter turn-out in 2019 in Andhra Pradesh (Positive trend justified)



Graph 3.27: Detailed Graphical comparison of forecast line and actual figure of voter turn-out in 2019 in Andaman and Nicobar Island (Negative trend justified)

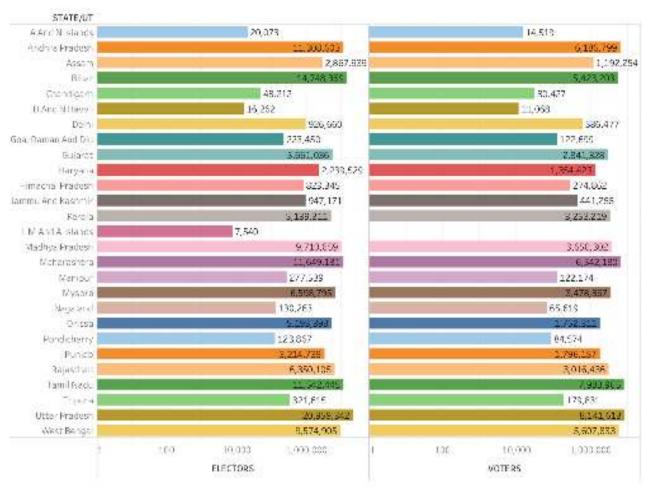
MAP GENERATED USING TABLEAU FOR WINNING MARGIN ANALYSIS ACROSS THE COUNTRY

YEAR: 2014



ANALYSIS OF WOMEN EMPOWERMENT OVER YEARS 1951-2019

WOMEN PARTICIPATION 1971



Sum of ELECTORS and sum of VOIERS for each 3. ATE/UT Color shows details about SIATE/UT. The view is filtered an 3. ATE/UT, which excludes Not land. TOTAL

Graph 3.29: Detailed Graphical comparison of women in electoral roll v/s turnout of women for vote casting in the year 1971(The first-year women turnout was registered)

Lek Saldin	Total No. of Seas	Women Members Who Wor	% of Total
Sine (1952)	489.	22	4.6
Second (1997)	414	27	5.6
Third (1962)	414	54	6.7
Fourth (1967)	523	34	5.9
Fish (1971)	521	22	4.2
Sinth (1977)	544	19	3.4
Seventh (1980)	544	28	7.1
Highth (1984)	514	44	8.1
Ninck (1989)	529	28	5.3
Tout (1991)	309	36	7.0
Elevanh (1996)	541	40*	7.6
Twylith (1998)	545	44*	8.0
Therwoods (1999)	543	410	8.8
Fourweigh (2004)	545	45*	8.1
Fitzenth (2009)	543	59.	10.9
Statecnik (2014)	543	fit	11.2

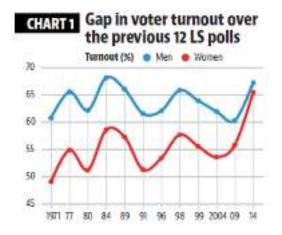
Source: Election Commission of India, New Delhi. Nore: "Including one nominated member.

Table 3.1: Representation of women in the Lok Sabha Elections since 1952

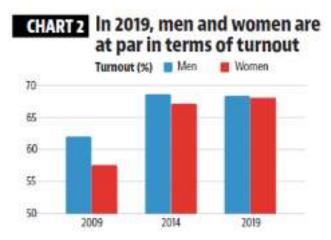
General Elections	Total Turnout	Men's Turnout	Women's Transus	Different in Turnout
Fine (1952)	61.2		==	_
Second (1957)	62.2	1.00	777	
Third (1562)	55.4	63.3	66.6	16,7
Fourth (1967)	61.1	66.7	55.5	11.2
N68 (1971)	55.3	60.9	49.3	11.8
filech (1977)	62.5	66.0	54.5	TEE
Sevensh (1980)	96.9	62.2	51.2	11,0
Eighin (1984)	64.0	68.4	59.2	0.2
Nioth (1989)	62.0	66.1	57.3	8.8
Tends (1991)	57.0	61.6	51.4	10.2
Eleventh (1996)	58,0	62.1	554	6.7
Twellik (1988)	62.0	66.0	58,0	8,0
Thireenth (1999)	60.0	65.0	55.7	8.7
Fourtemb (2004)	59.8	61.7	53.3	8.4
Fifteenth (2005)	58.2	60.2	55.8	4.4
Siccounth (2014)	66.4	67.1	65.6	1.9

Source: Election Commission of India, New Delhi.

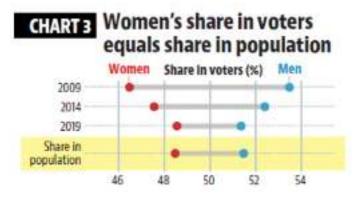
 Table 3.2: Turnout of Women for voting in the Lok Sabha Elections across years



Graph 3.30: Graphical comparison of men and women for vote casting across the years



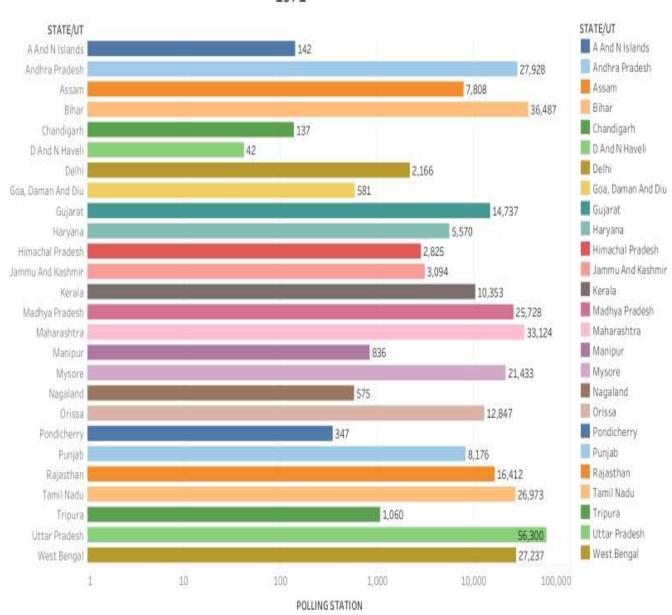
Graph 3.31: Depiction of women empowerment reflecting in the voting behaviour



Graph 3.32: Graphical representation of share in voting percentage (Men v/s Women)

ANALYSIS OF POLLING STATIONS IN THE ELECTORAL BATTLE

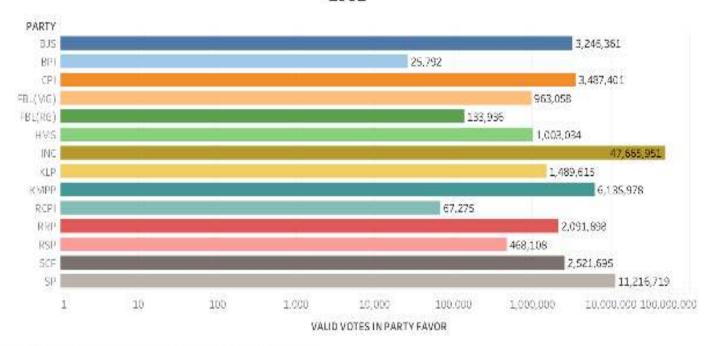
POLLING STATIONS STATE-WISE 1971



Sum of POLLING STATION for each STATE/UT. Color shows details about STATE/UT. The view is filtered on STATE/UT, which excludes L M And A Islands and TOTAL.

Graph 3.33: Depiction of polling stations across states 1971

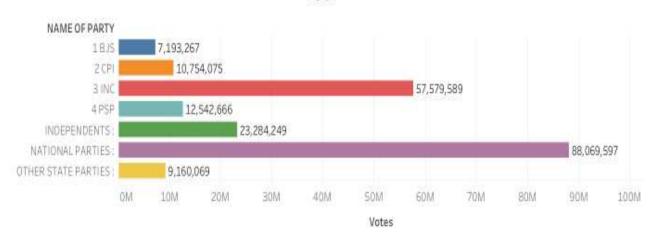
POLITICAL PARTY VOTE BANK 1951



Sum of VALID VOTES for each PARTY. Color shows details about PARTY.

Graph 3.34: Comparison of party wise voter-bank prevailing since 1951

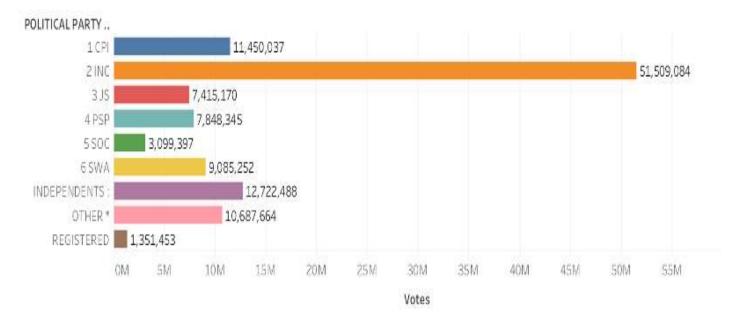
POLITICAL PARTY VOTE BANK 1957



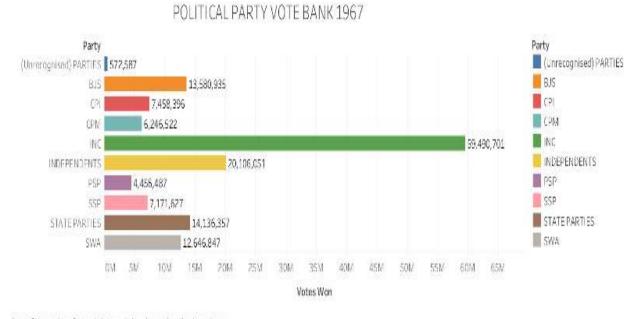
Sum of Votes for each NAME OF PARTY. Color shows details about NAME OF PARTY. The view is filtered on NAME OF PARTY, which excludes (Unrecognised) PARTIES: and REGISTERED.

Graph 3.35: Comparison of party wise voter-bank 1957

POLITICAL PARTY VOTE BANK 1962



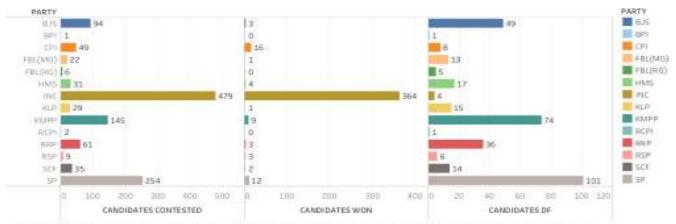
Graph 3.36: Comparison of party wise voter-bank clearly widening the gap as years change



Sum of Votes Won for each Party. Color shows details about Party.

Graph 3.37: Comparison of party wise voter-bank 1967

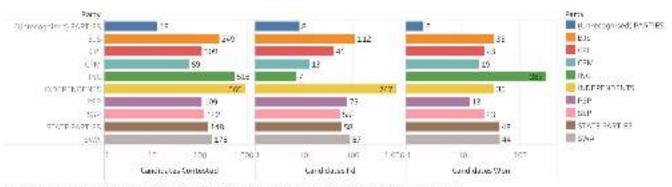
PERFORMANCE OF POLITICAL PARTIES 1951



Sumpt CANDIDATES CONTESTED, sum at CANDIDATES WON and sum of CANDIDATES OF for each PARTY. Color shows details about PARTY. The view is filtered on PARTY, which excludes half.

Graph 3.38: Detailed Graphical comparison of party-wise candidates 1951

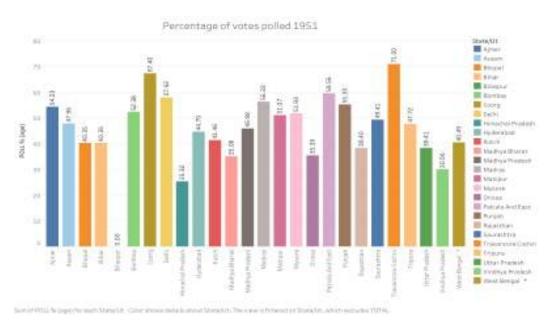
PERFORMANCE OF NATIONAL PARTIES VIA-A-VIS OTHERS 1967



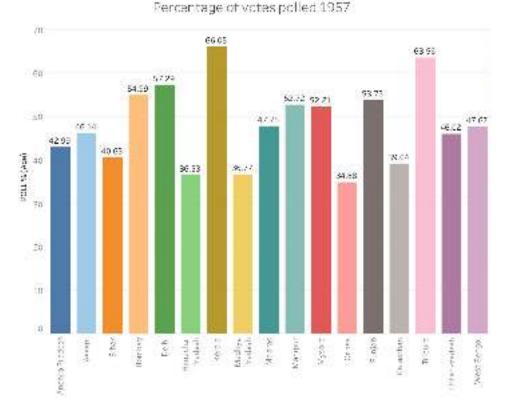
spin of Cardidates by Healed, spin of Cardidates Edundson, of Cardidates Wei Ferendi Herby, Solar allows docate about Porty.

Graph 3.39: Detailed Graphical comparison of party-wise candidates 1967

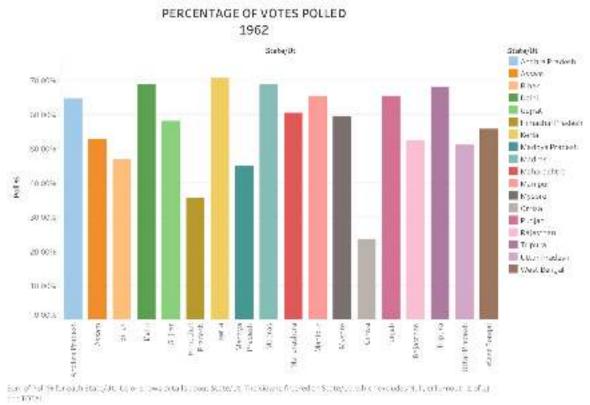
ANALYSIS OF VOTES PERCENTAGE ACROSS YEARS 1951-2019 USING TABLEAU



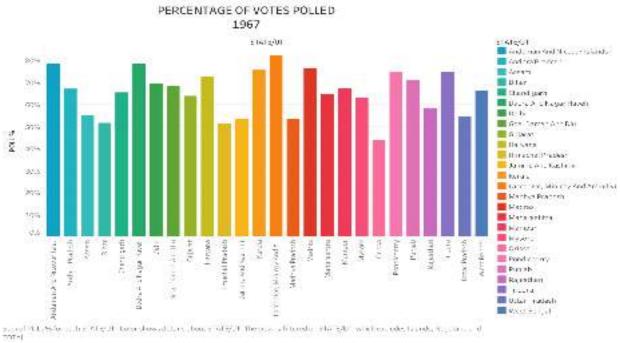
Graph 3.40: Detailed Graphical representation of percentage of votes polled across states in 1951



Graph 3.41: Detailed Graphical representation of percentage of votes polled across states in 1957



Graph 3.42: Detailed Graphical representation of percentage of votes polled across states in 1962



Graph 3.43: Detailed Graphical representation of percentage of votes polled across states in 1967

POLL PERCENTAGE STATE-WISE 1971 STATEOUT STATEOUT dank P bree 6 Circa et Educa -Acres Averes 0.5917 A service a seeds 0.5052 # April Figure 1,4005 Blut Thend sock Chant can I 7,6797 Frank Rosel 3 H JA: skillenti W Can. laster | 9 -- 19 E fire Owner God N. 0.5543 C.pr Street 2,3540 Datasta. 42200 Syache Parash 0.000 Hirana Harrah 0.5017 E Jereni Ada Kabania premier Admir M Karas 829 br 0.5453 Kodschodelt tradityz a vicinda 🖁 1,4900 Material ira Vatamorita 0.3774 Witness. etarger | 0.455% 6574 Www. begebeid II B bagaigns 0 - 519 E Crow J. C. A. -cedichery | Postty may Piribb Zurfale W 0.5993 E Propodian history. 0.5465 Tooc 977 "bold to kell 0.7195 Tr puta Triporty | 9.6005 Utrar Prodest Other Viscoli | Q And TOTAL . 10,00% 71,00% 200% 77.40% 20,000 52000 15554 70,0005 Mages 191.5

Graph 3.44: Detailed Graphical representation of percentage of votes polled across states in 1971

some till a grades Mith, som komides helders eller och an entrangen tillt och entrasiden i kendt sedera focus

IMPLEMENTATION OF DEEP LEARNING ALGORITHMS

RANDOM FOREST ALGORITHM:

Random Forest is an adaptable, simple to utilize AI calculation that produces, even without hyper-parameter tuning, an incredible outcome more often than not. It is likewise a standout amongst the most utilized calculations, since it's straightforwardness and the way that it tends to be utilized for both order and relapse undertakings. In this post, you will realize, how the arbitrary backwoods calculation works and a few other significant things about it.

Random Forest is a directed learning calculation. Like you would already be able to see from its name, it makes backwoods and makes it some way or another irregular. The "forest" it manufactures, is a group of Decision Trees, more often than not prepared with the "sacking" strategy. The general thought of the packing technique is that a blend of learning models builds the general result. Random Forest has almost a similar hyperparameters as a choice tree or a stowing classifier. Luckily, you don't need to consolidate a choice tree with a packing classifier and can just effectively utilize the classifier-class of Random Forest. Like I previously stated, with Random Forest, you can likewise manage Regression assignments by utilizing the Random Forest regressor.

Random Forest adds extra arbitrariness to the model, while developing the trees. Rather than hunting down the most significant element while part a hub, it looks for the best element among an arbitrary subset of highlights. This outcomes in a wide decent variety that for the most part results in a superior model.

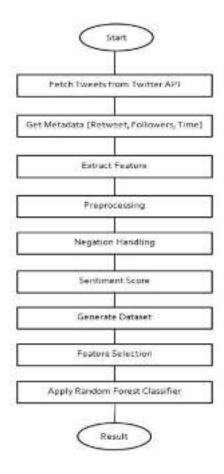


Figure 4.1: Flowchart to depict the working of random forest classifier in the electoral tweet analysis

Subsequently, in Random Forest, just any random subset of the highlights is mulled over by the calculation for part a hub. You can even make trees increasingly arbitrary, by moreover utilizing irregular edges for each component as opposed to hunting down the most ideal edges (like a typical choice tree does).

BAGGING OF DATA

Decision tree application

```
import numpy as np
from sklearn.feature extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.feature extraction.text import TfidfTransformer
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
import os
import pandas as pd
import utils as ul
from sklearn.pipeline import Pipeline
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as mplt
import inspect
fileDir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) # script directory
filePath = fileDir.rsplit('/', 1)[0]
import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle
tfidf vect, tfidf vect ngram, tfidf vect ngram chars, vectorizer = ul.get vectorize ngrams()
def plot precision recall(precision, recall, f1 score, text, figname):
   num classes = 8
   colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'gray']
   full label = []
   labels = ['anger', 'arousal', 'dominance', 'faith', 'fear', 'joy', 'neutral', 'sadness']
   plt.figure(figsize=(7, 8))
   lines = []
   count = 0
   for f score in fl score:
       x = np.linspace(0.01, 1)
       y = f score * x / (2 * x - f score)
       1, = plt.plot(x[y \ge 0], y[y \ge 0], color=colors[count], alpha=0.2)
       full_label.append(labels[count] + ',f1={0:0.1f},'.format(f_score) + 'p={0:0.1f},'.format(precision[count]) +
'r={0:0.1f}'.format(recall[count]),)
       count = count + 1
```

```
for i in range(num classes):
       1, = plt.plot(recall[i], precision[i], color=colors[i], lw=2)
       plt.legend([1], [full label[i]], loc=(0.6, .7), prop=dict(size=8))
       lines.append(1)
   fig = plt.qcf()
   fig.subplots adjust(bottom=0.25)
   plt.xlim([0.0, 1.0])
   plt.ylim([0.0, 1.05])
   plt.xlabel('Recall')
   plt.ylabel('Precision')
   plt.title('Precision-Recall Curve for' + text, fontsize =6)
   plt.legend(lines, full label, loc=(0.6, .7), prop=dict(size=8))
   mplt.savefig(filePath + "/figs/congress/bagging/"+ figname + ".png") #save the figs
def apply rf bagging(training set x, training set y, test set x, test set y, party name):
   X = vectorizer.fit transform(training set x).toarray()
   tfidf vect ngram.fit(training set x)
   xtrain tfidf = tfidf vect ngram.transform(training set x)
   xvalid tfidf = tfidf vect ngram.transform(test set x)
   clf = RandomForestClassifier(n estimators=500,
                               max features=0.25,
                               criterion="entropy",
                               class weight="balanced")
   clf.fit(X, training set y)
   pred = clf.predict(vectorizer.transform(test set x).toarray())
   pscore 1 = metrics.accuracy score(test set y, pred)
   print("RandomForest Accuracy" , pscore 1)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("RandomForest Precision =", precisions)
   print("RandomForest Recall =", recall)
   print("RandomForest Fl score =", fl score)
   plot precision recall(precisions, recall, f1 score, ' ' + party name + ' :CountVector with RandomForestClassifier'
(rf-cv')
   clf = RandomForestClassifier(n estimators=500,
                               max features=0.25,
                               criterion="entropy",
                               class weight="balanced")
```

```
clf.fit(xtrain tfidf, training set y)
    pred = clf.predict(xvalid tfidf)
    pscore 2 = metrics.accuracy score(test set y, pred)
   print("RandomForest Accuracy" , pscore_2)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
    print("RandomForest Precision =", precisions)
    print("RandomForest Recall =", recall)
    print("RandomForest Fl score =", fl score)
   plot precision recall(precisions, recall, f1 score, ' + party name + ':TfIdf with RandomForestClassifier', 'rf-
tdidf'
   text clf = Pipeline([('vect', vectorizer), ('tfidf', TfidfTransformer()), ('rf', RandomForestClassifier(n estimato
rs=500,
                               max features=0.25,
                               criterion="entropy",
                               class weight="balanced"))])
   text clf.fit(training set x, training set y)
   pred = text clf.predict(test set x)
    pscore 3 = metrics.accuracy score(test set y, pred)
   print("RandomForest Accuracy" , pscore 3)
   precisions, recall, f1_score, _ = metrics.precision_recall_fscore_support(test_set_y, pred)
    print("RandomForest Precision =", precisions)
   print("RandomForest Recall =", recall)
    print("RandomForest F1 score =", f1 score)
   plot precision recall(precisions, recall, fl score, ' ' + party name + ' :CountVector & TfIdf with RandomForestCla
ssifier', 'rf-pip')
def apply extratree bagging(training set x, training set y, test set x, test set y, party name):
    X = vectorizer.fit transform(training set x).toarray()
    tfidf vect ngram.fit(training set x)
    xtrain tfidf = tfidf vect ngram.transform(training set x)
    xvalid tfidf = tfidf vect ngram.transform(test set x)
   clf = ExtraTreesClassifier(criterion="gini",
                max depth=None,
                min samples split=2,
                min samples leaf=1,
                 max features=0.25)
```

```
clf.fit(X, training set v)
   pred = clf.predict(vectorizer.transform(test set x).toarray())
   print("ExtraTrees-count vector" + str(pred))
   pscore 1 = metrics.accuracy score(test set y, pred)
   print("ExtraTrees Accuracy" , pscore_1)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("ExtraTrees Precision =", precisions)
   print("ExtraTrees Recall =", recall)
   print("ExtraTrees F1 score =", f1 score)
   plot precision recall(precisions, recall, f1 score, ' ' + party name + ' :CountVector with ExtraTreesClassifier',
'et-cv')
   clf = ExtraTreesClassifier(criterion="gini",
                max depth=None,
                min samples split=2,
                min samples leaf=1,
                max features=0.25)
   clf.fit(xtrain tfidf, training set y)
   pred = clf.predict(xvalid tfidf)
   print("ExtraTrees - tfidf" + str(pred))
   pscore 2 = metrics.accuracy score(test set y, pred)
   print("ExtraTrees Accuracy" , pscore 2)
   precisions, recall, f1_score, _ = metrics.precision_recall_fscore_support(test_set_y, pred)
   print("ExtraTrees Precision =", precisions)
   print("ExtraTrees Recall =", recall)
   print("ExtraTrees Fl score =", fl score)
   plot precision recall(precisions, recall, fl score, ' ' + party name + ' :TfIdf with ExtraTreesClassifier', 'et-td
if')
   text clf = Pipeline([('vect', vectorizer), ('tfidf', TfidfTransformer()), ('eb', ExtraTreesClassifier(criterion="g
ini",
                max depth=None,
                min samples split=2,
                min samples leaf=1,
                max features=0.25))])
   text clf.fit(training set x, training set y)
   pred = text clf.predict(test set x)
   pscore 3 = metrics.accuracy score(test set y, pred)
   print("ExtraTrees Accuracy" , pscore 3)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("ExtraTrees Precision =", precisions)
   print("ExtraTrees Recall =", recall)
   print("ExtraTrees Fl score =", fl score)
   plot precision recall(precisions, recall, fl score, ' ' + party name + ' : CountVector & TfIdf with ExtraTreesClass
ifier', 'et-pip')
```

```
def apply decisiontree bagging(training set x, training set y, test set x, test set y, party name):
    X = vectorizer.fit transform(training set x).toarray()
    tfidf vect ngram.fit(training set x)
    xtrain tfidf = tfidf vect ngram.transform(training set x)
    xvalid tfidf = tfidf vect ngram.transform(test set x)
   clf = DecisionTreeClassifier()
    clf.fit(X, training set y)
    pred = clf.predict(vectorizer.transform(test set x).toarray())
   pscore 1 = metrics.accuracy score(test set y, pred)
    print("DecisionTrees Accuracy" , pscore 1)
    precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
    print("DecisionTrees Precision =", precisions)
   print("DecisionTrees Recall =", recall)
    print("DecisionTrees F1 score =", f1 score)
    plot precision recall(precisions, recall, f1 score, ' ' + party name + ' :CountVector with DecisionTreeClassifier'
, 'dt-cv')
   clf = DecisionTreeClassifier()
    clf.fit(xtrain tfidf, training set y)
   pred = clf.predict(xvalid tfidf)
    pscore 2 = metrics.accuracy score(test set y, pred)
    print("DecisionTrees Accuracy" , pscore 2)
   precisions, recall, f1_score, _ = metrics.precision_recall_fscore_support(test_set_y, pred)
    print("DecisionTrees Precision =", precisions)
    print("DecisionTrees Recall =", recall)
    print("DecisionTrees F1 score =", f1 score)
   plot precision recall(precisions, recall, f1 score, ' ' + party name + ' :TfIdf with DecisionTreeClassifier', 'dt-
tdif')
    text clf = Pipeline([('vect', vectorizer), ('tfidf', TfidfTransformer()), ('eb', DecisionTreeClassifier())])
    text clf.fit(training set x, training set y)
    pred = text clf.predict(test set x)
    pscore 3 = metrics.accuracy score(test set y, pred)
    print("DecisionTrees Accuracy" , pscore 3)
    precisions, recall, f1 score, = metrics.precision_recall_fscore_support(test_set_y, pred)
    print("DecisionTrees Precision =", precisions)
    print("DecisionTrees Recall =", recall)
    print("DecisionTrees F1 score =", f1 score)
    plot precision recall(precisions, recall, f1 score, ' ' + party name + ' :CountVector & TfIdf with DecisionTreeCla
ssifier', 'dt-pip')
```

```
def apply clf bagging(training set x, training set y, test set x, test set y, party name):
   X = vectorizer.fit transform(training set x).toarray()
   tfidf vect ngram.fit(training set x)
   xtrain tfidf = tfidf vect ngram.transform(training set x)
   xvalid tfidf = tfidf vect ngram.transform(test set x)
   clf = BaggingClassifier(n estimators =25,
                max features=0.25)
   clf.fit(X, training set y)
   pred = clf.predict(vectorizer.transform(test set x).toarray())
   pscore 1 = metrics.accuracy score(test set y, pred)
   print("Bagging Accuracy", pscore 1)
   precisions, recall, fl score, = metrics.precision recall fscore support(test set y, pred)
    print("Bagging Precision =", precisions)
   print("Bagging Recall =", recall)
   print("Bagging F1 score =", f1 score)
   plot precision recall(precisions, recall, f1 score, ' ' + party name + ' :CountVector with BaggingClassifier', 'bg
-cv')
   clf = BaggingClassifier(n estimators =25,
                max features=0.25)
   clf.fit(xtrain tfidf, training set y)
   pred = clf.predict(xvalid tfidf)
   pscore 2 = metrics.accuracy score(test set y, pred)
   print("Bagging Accuracy" , pscore 2)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("Bagging Precision =", precisions)
   print("Bagging Recall =", recall)
   print("Bagging F1 score =", f1 score)
   plot precision recall(precisions, recall, fl score, ' ' + party name + ' :TfIdf with BaggingClassifier', 'bg-tdif'
   text clf = Pipeline([('vect', vectorizer), ('tfidf', TfidfTransformer()), ('pipbg', BaggingClassifier(n estimators
=25,
                 max features=0.25))1)
```

```
text clf.fit(training set x, training set y)
   pred = text clf.predict(test set x)
   pscore 3 = metrics.accuracy score(test set y, pred)
   print("Bagging Accuracy" , pscore_3)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("Bagging Precision =", precisions)
   print("Bagging Recall =", recall)
   print("Bagging F1 score =", f1 score)
   plot precision recall(precisions, recall, fl score, ' ' + party name + ' :CountVector & TfIdf with BaggingClassifi
er on RandomForest', 'bg-pip')
def apply clf rf bagging(training set x, training set y, test set x, test set y, party name):
   rf = RandomForestClassifier(n estimators=500,
                                max features=0.25,
                                criterion="entropy",
                                class weight="balanced")
   X = vectorizer.fit transform(training set x).toarray()
   tfidf vect ngram.fit(training set x)
   xtrain tfidf = tfidf vect ngram.transform(training set x)
   xvalid tfidf = tfidf vect ngram.transform(test set x)
   clf = BaggingClassifier(base estimator = rf, n estimators =25,
                max features=0.25)
   clf.fit(X, training set v)
   pred = clf.predict(vectorizer.transform(test set x).toarray())
   pscore 1 = metrics.accuracy score(test set y, pred)
   print("Bagging Accuracy" , pscore_1)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("Bagging Precision =", precisions)
   print("Bagging Recall =", recall)
   print("Bagging F1 score =", f1 score)
   plot precision recall(precisions, recall, f1 score, ' ' + party name + ' :CountVector with BaggingClassifier on Ra
ndomForest', 'bg-rf-cv')
   clf = BaggingClassifier(base estimator = rf, n estimators =25,
                max features=0.25)
   clf.fit(xtrain tfidf, training set y)
   pred = clf.predict(xvalid tfidf)
   pscore 2 = metrics.accuracy score(test set y, pred)
   print("Bagging Accuracy" , pscore 2)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("Bagging Precision =", precisions)
   print("Bagging Recall =", recall)
   print("Bagging F1 score =", f1 score)
```

```
plot_precision_recall(precisions, recall, f1_score, ' ' + party_name + ' :TfIdf with BaggingClassifier on RandomFo
rest', 'bg-rf-tdif')
   text clf = Pipeline([('vect', vectorizer), ('tfidf', TfidfTransformer()), ('pipbg', BaggingClassifier(n estimators
=25,
                max features=0.25))])
   text clf.fit(training set x, training set y)
   pred = text clf.predict(test set x)
   pscore 3 = metrics.accuracy score(test set y, pred)
   print("Bagging Accuracy" , pscore 3)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("Bagging Precision =", precisions)
   print("Bagging Recall =", recall)
   print("Bagging F1 score =", f1 score)
   plot precision recall(precisions, recall, f1_score, ' ' + party_name + ' :Count Vector & TfIdf with BaggingClassif
ier on RandomForest', 'bg-rf-pip')
if name == '_main_':
   tain path = filePath + "/train/sentiments/train-dataset/"
    test path = filePath + "/train/sentiments/test-dataset/"
   train file names = os.listdir(tain path)
   test file names = os.listdir(test path)
    party_names = ['Bjp', 'Congress', 'Bjp-Congress', 'Neutral']
    for i in range(0, len(train file names)):
       train = pd.read csv(tain path+ train file names[i]).dropna()
       test = pd.read csv(test path+ test file names[i]).dropna()
       print("Processing file.." + train_file_names[i])
       training set x = train['tweet'].values
       training set y = ul.label encode(train['mood'])
        test set x = test['tweet'].values
       test set y = ul.label encode(test['mood'])
        apply rf bagging(training set x, training set y, test set x, test set y, party names[i])
        apply clf bagging(training set x, training set y, test set x, test set y, party names[i])
        apply extratree bagging(training set x, training set y, test set x, test set y, party names[i])
        apply decisiontree bagging(training set x, training set y, test set x, test set y, party names[i])
        apply clf rf bagging(training set x, training set y, test set x,
                                                                   test set y, party names[i])
```

Bagging Classifier: BJP Sentiment prediction

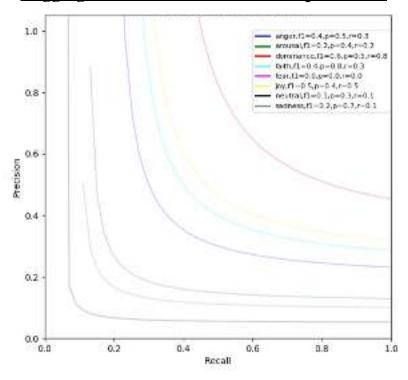


Figure 3.2: Precision recall curve for BJP: Count Vector with bagging classifier

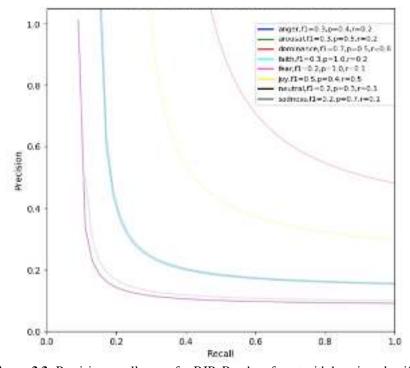


Figure 3.3: Precision recall curve for BJP: Random forest with bagging classifier

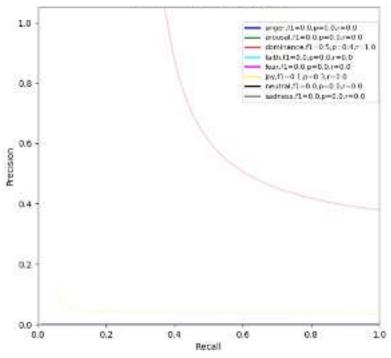


Figure 3.4: Precision recall curve for BJP: Tfldf with bagging classifier

Bagging Classifier: Congress Sentiment prediction

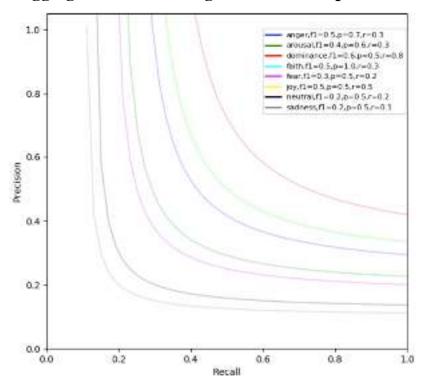


Figure 3.5: Precision recall curve for Congress: Count Vector with bagging classifier

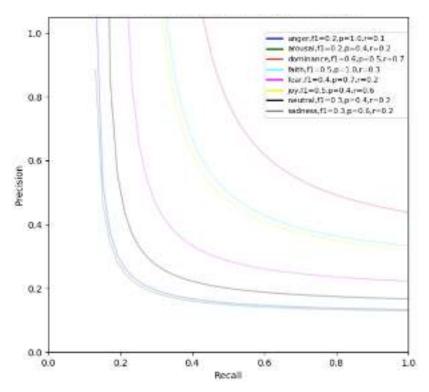


Figure 3.6: Precision recall curve for Congress: Random forest with bagging classifier

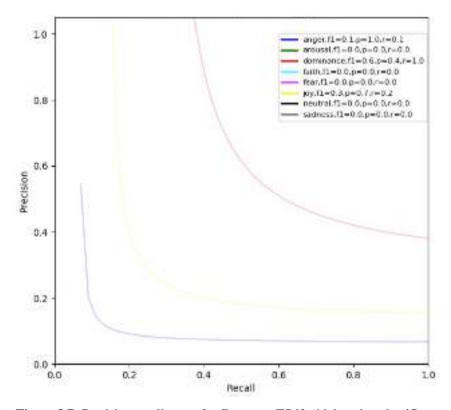


Figure 3.7: Precision recall curve for Congress: Tfldf with bagging classifier

BOOSTING OF DATA

```
import numpy as np
from sklearn.feature extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.feature extraction.text import TfidfTransformer
from sklearn import metrics
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import AdaBoostClassifier
from xgboost import XGBClassifier
from sklearn.model selection import RandomizedSearchCV, GridSearchCV
from sklearn.metrics import roc auc score
from sklearn.model selection import StratifiedKFold
import datetime
from sklearn.preprocessing import label binarize
from catboost import CatBoostClassifier
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import pandas as pd
import utils as ul
import os
from sklearn.pipeline import Pipeline
import lightgbm as lgb
import inspect
fileDir = os.path.dirname(os.path.abspath(inspect.qetfile(inspect.currentframe()))) # script directory
filePath = fileDir.rsplit('/', 1)[0]
tfidf vect, tfidf vect ngram, tfidf vect ngram chars, vectorizer = ul.get vectorize ngrams()
def plot precision recall(precision, recall, fl score, text, figname):
   num classes = 8
   colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'gray']
    full label = []
   labels = ['anger', 'arousal', 'dominance', 'faith', 'fear', 'joy', 'neutral', 'sadness']
   plt.figure(figsize=(7, 8))
   lines = []
   count = 0
   for f score in fl score:
       x = np.linspace(0.01, 1)
       y = f score * x / (2 * x - f score)
       1, = plt.plot(x[y >= 0], y[y >= 0], color=colors[count], alpha=0.2)
        full_label.append(labels[count] + ',f1=(0:0.1f),'.format(f_score) + 'p=(0:0.1f),'.format(precision[count]) +
'r={0:0.1f}'.format(recall[count]),)
       count = count + 1
```

```
for i in range(num classes):
       1, = plt.plot(recall[i], precision[i], color=colors[i], lw=2)
       plt.legend([1], [full label[i]], loc=(0.6, .7), prop=dict(size=8))
       lines.append(1)
   fig = plt.gcf()
   fig.subplots adjust(bottom=0.25)
   plt.xlim([0.0, 1.0])
   plt.ylim([0.0, 1.05])
   plt.xlabel('Recall')
   plt.ylabel('Precision')
   plt.title('Precision-Recall Curve for ' + text, fontsize =6)
   plt.legend(lines, full label, loc=(0.6, .7), prop=dict(size=8))
   plt.savefig(filePath + "/figs/bjp/boosting/"+ figname + ".png")
def timer(start time=None):
   if not start time:
       start time = datetime.datetime.now()
       return start time
   elif start time:
       thour, temp sec = divmod((datetime.datetime.now() - start time).total seconds(), 3600)
        tmin, tsec = divmod(temp sec, 60)
       print('\n Time taken: %i hours %i minutes and %s seconds.' % (thour, tmin, round(tsec, 2)))
def apply gradient boosting(training set x, training set y, test set x, test set y, party name):
   X = vectorizer.fit transform(training_set_x).toarray()
   tfidf vect ngram.fit(training set x)
   xtrain tfidf = tfidf vect ngram.transform(training set x)
   xvalid tfidf = tfidf vect ngram.transform(test set x)
   clf = GradientBoostingClassifier(n estimators =100, learning rate =0.1, max depth=6, min samples leaf =1, max feat
ures=1.0)
   clf.fit(X, training set y)
   pred = clf.predict(vectorizer.transform(test set x).toarray())
   pscore = metrics.accuracy score(test set y, pred)
   precisions, recall, fl score, = metrics.precision recall fscore support(test set y, pred)
   print("GradientBoosting Precision =", precisions)
   print("GradientBoosting Recall =", recall)
   print("GradientBoosting F1 score =", f1 score)
   print("Gradient Boosting Accuracy=", pscore)
   plot precision recall(precisions, recall, f1 score,
                          ' ' + party name + ' :CountVector with GradientBoostClassifier', 'gb-count')
   clf = GradientBoostingClassifier(n estimators =100, learning rate =0.1, max depth=6, min samples leaf =1, max feat
ures=1.0)
   clf.fit(xtrain tfidf, training set y)
```

```
text clf = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('gb', GradientBoostingClassifier
(n estimators =100, learning rate =0.1, max depth=6, min samples leaf =1, max features=1.0))])
   text clf.fit(training set x, training set y)
   pred = text clf.predict(test set x)
   pscore = metrics.accuracy score(test set y, pred)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("GradientBoosting Precision =", precisions)
   print("GradientBoosting Recall =", recall)
   print("GradientBoosting F1 score =", f1 score)
   print("Gradient Boosting Accuracy=", pscore)
   plot precision recall(precisions, recall, f1 score,
                          ' ' + party name + ' :CountVector & TfIdf with GradientBoostClassifier', 'qb-pip')
def apply lightgbm boosting(training set x, training set y, test set x, test set y, party name):
   X = vectorizer.fit transform(training set x).toarray()
   tfidf vect ngram.fit(training set x)
   xtrain tfidf = tfidf vect ngram.transform(training set x)
   xvalid tfidf = tfidf vect ngram.transform(test set x)
   clf = lgb.LGBMClassifier(boosting type= 'gbdt',
         objective = 'multi-class',
         n jobs = 3,
         silent = True,
         max depth = 4,colsample bytree=0.66, subsample = 0.75, num leaves =16)
   clf.fit(X, training set y)
   pred = clf.predict(vectorizer.transform(test set x).toarray())
   pscore = metrics.accuracy score(test set y, pred)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("Light GBM Precision =", precisions)
   print("Light GBM Recall =", recall)
   print("Light GBM F1 score =", f1 score)
   print("Light GBM Accuracy=", pscore)
   plot precision recall(precisions, recall, f1 score,
                          ' ' + party name + ' :CountVector with LightGBMClassifier', 'lgb-count')
   clf = lqb.LGBMClassifier(boosting type='qbdt',
                            objective='multi-class',
                            n jobs=3,
                            silent=True,
                            max depth=4, colsample bytree=0.66, subsample=0.75, num leaves=16)
```

```
clf.fit(xtrain tfidf, training set y)
    pred = clf.predict(xvalid tfidf)
   pscore = metrics.accuracy score(test set y, pred)
    precisions, recall, f1_score, _ = metrics.precision_recall_fscore_support(test_set_y, pred)
    print("Light GBM Precision =", precisions)
   print("Light GBM Recall =", recall)
   print("Light GBM F1 score =", f1 score)
   print("Light GBM Boosting Accuracy=", pscore)
    plot precision recall(precisions, recall, f1 score,
                          ' ' + party name + ' :TfIdf with LightGBMClassifier', 'lgb-tfidf')
   text clf = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('lgb', lgb.LGBMClassifier(boosti
ng type='gbdt',
                             objective='multi-class',
                             n jobs=3.
                             silent=True, max depth = 4, colsample bytree=0.66, subsample = 0.75, num leaves =16))])
    text clf.fit(training set x, training set y)
    pred = text clf.predict(test set x)
   pscore = metrics.accuracy score(test set y, pred)
   precisions, recall, f1_score, = metrics.precision_recall_fscore_support(test_set_y, pred)
   print("Light GBM Precision =", precisions)
   print("Light GBM Recall =", recall)
   print("Light GBM F1 score =", f1 score)
   print("Light GBM Accuracy=", pscore)
    plot precision recall(precisions, recall, f1 score,
                          ' ' + party name + ' :CountVector & TfIdf with LightGBMClassifier', 'lgb-pip')
def apply xg boosting(training set x, training set y, test set x, test set y, party name):
   X = vectorizer.fit transform(training set x).toarray()
   tfidf vect ngram.fit(training set x)
   xtrain tfidf = tfidf vect ngram.transform(training set x)
   xvalid tfidf = tfidf vect ngram.transform(test set x)
   xgb = XGBClassifier(max depth=2, learning rate=0.1,
                 n estimators=100, silent=True,
                booster='gbtree')
   xgb.fit(X, training set y)
    pred = xgb.predict(vectorizer.transform(test set x).toarray())
   pscore = metrics.accuracy score(test set y, pred)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("XgBoost Precision =", precisions)
   print("XgBoost Recall =", recall)
   print("XgBoost F1 score =", f1 score)
   print("XgBoost Accuracy=", pscore)
```

```
xgb.fit(xtrain tfidf, training set y)
   pred = xgb.predict(xvalid tfidf)
   pscore = metrics.accuracy score(test set y, pred)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("XgBoost Precision =", precisions)
   print("XgBoost Recall =", recall)
   print("XgBoost F1 score =", f1 score)
   print("XgBoost Accuracy=", pscore)
   plot precision recall(precisions, recall, f1 score,
                          ' ' + party name + ' :TfIdf with XgBoostClassifier', 'xgb-tfidf')
   text clf = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('xgb', XGBClassifier(max depth=2
, learning rate=0.1,
                       n estimators=100, silent=True,
                       booster='gbtree'))])
   text clf.fit(training set x, training set y)
   pred = text clf.predict(test set x)
   pscore = metrics.accuracy score(test set v, pred)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("XgBoost Precision =", precisions)
   print("XgBoost Recall =", recall)
   print("XgBoost F1 score =", f1 score)
   print("XgBoost Boosting Accuracy=", pscore)
   plot precision recall(precisions, recall, f1 score,
                          ' ' + party name + ' :CountVector & TfIdf with XgBoostClassifier', 'xgb-pip')
def apply ada boosting(training set x, training set y, test set x, test set y, party name):
   X = vectorizer.fit transform(training set x).toarray()
   tfidf vect ngram.fit(training set x)
   xtrain tfidf = tfidf vect ngram.transform(training set x)
   xvalid tfidf = tfidf vect ngram.transform(test set x)
   clf = AdaBoostClassifier()
   clf.fit(X, training set y)
   pred = clf.predict(vectorizer.transform(test_set_x).toarray())
   pscore = metrics.accuracy score(test set y, pred)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("AdaBoosting Precision =", precisions)
   print("AdaBoosting Recall =", recall)
   print("AdaBoosting F1 score =", f1 score)
   print("AdaBoosting Accuracy=", pscore)
   plot precision recall(precisions, recall, f1 score,
                          ' ' + party name + ' :CountVector with AdaBoostClassifier', 'ab-cv')
   clf = AdaBoostClassifier()
   clf.fit(xtrain tfidf, training set y)
   pred = clf.predict(xvalid tfidf)
```

```
text clf = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('ab', AdaBoostClassifier())])
    text clf.fit(training set x, training set y)
   pred = text clf.predict(test set x)
   pscore = metrics.accuracy score(test set y, pred)
   print("AdaBoost - pipeline count vector + tdiff" + str(pred))
   print(pscore)
   precisions, recall, f1 score, = metrics.precision recall fscore support(test set y, pred)
   print("AdaBoosting Precision =", precisions)
   print("AdaBoosting Recall =", recall)
   print("AdaBoosting F1 score =", f1 score)
   print("AdaBoosting Accuracy=", pscore)
   plot precision recall(precisions, recall, f1 score,
                          ' ' + party name + ' :CountVector & TfIdf with AdaBoostClassifier', 'ab-pip')
if name == ' main ':
   tain path = filePath + "/train/sentiments/train-dataset/"
    test path = filePath + "/train/sentiments/test-dataset/"
   train file names = os.listdir(tain path)
   test file names = os.listdir(test path)
   party names = ['Bjp', 'Congress', 'Bjp-Congress', 'Neutral']
   for i in range(0, len(train file names)):
        train = pd.read csv(tain path+ train file names[i]).dropna()
        test = pd.read csv(test path+ test file names[i]).dropna()
       print("Processing file.." + train file names[i])
        training set x = train['tweet'].values
        training set y = ul.label encode(train['mood'])
        test set x = test['tweet'].values
        test set y = ul.label encode(test['mood'])
        apply xg boosting(training set x, training set y, test set x, test set y, party names[i])
        apply gradient boosting(training set x, training set y, test set x, test set y, party names[i])
        apply ada boosting(training set x, training set y, test set x, test set y, party names[i])
        apply lightgbm boosting(training set x, training set y, test set x, test set y, party names[i])
```

Result for BJP

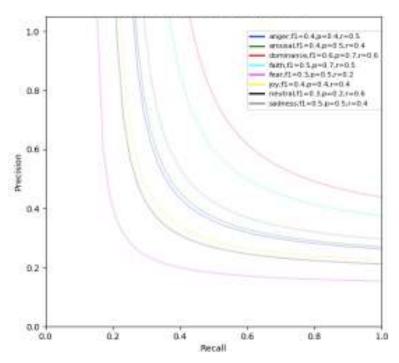


Figure 4.1: Precision recall curve for BJP: Decision tree classifier

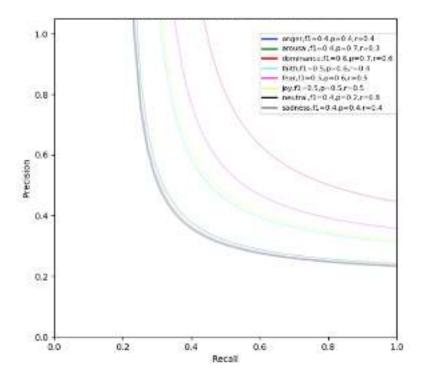


Figure 4.2: Precision recall curve for BJP: Tfldf with Decision tree classifier and countVector

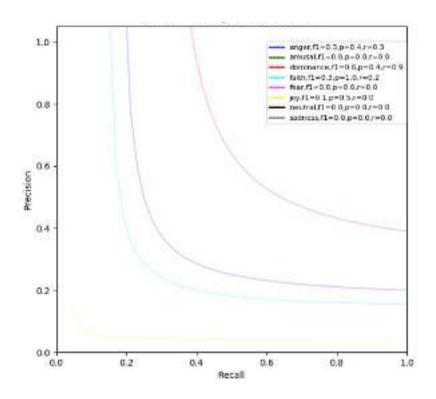


Figure 4.3: Precision recall curve for BJP: Tfldf with Decision tree classifier

Results for Congress

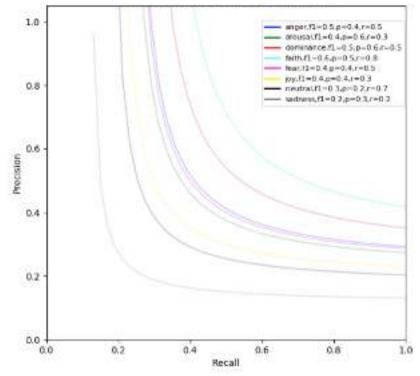


Figure 4.4: Precision recall curve for Congress: Decision tree classifier

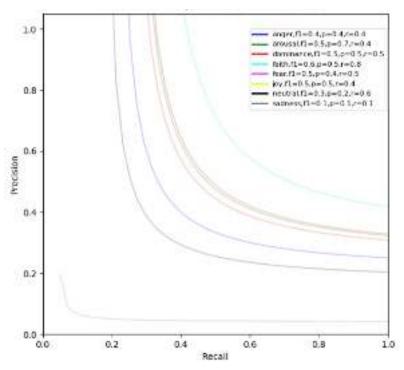


Figure 4.5: Precision recall curve for Congress: Tfldf with Decision tree classifier and countVector

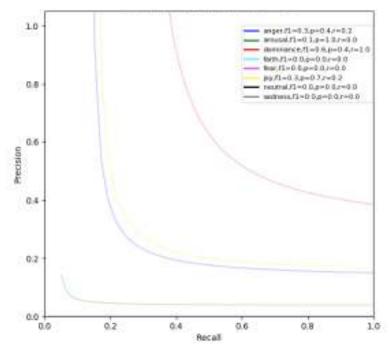


Figure 4.6: Precision recall curve for Congress: Tfldf with Decision tree classifier

MULTI-CLASS TEXT CLASSIFICATION WITH LSTM

Automatic text classification or report arrangement should be possible from multiple points of view in AI as we have seen previously.

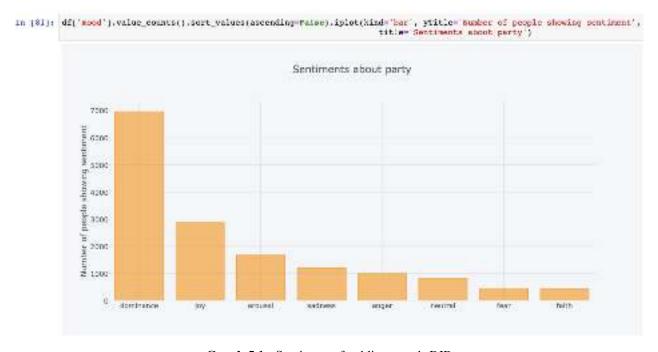
In this it is shown how a Recurrent Neural Network (RNN) utilizing the Long Short Term Memory (LSTM) design can be executed utilizing Keras.

```
In [73]: df = pd.read csv('/Users/ritika/Downloads/train/sentiments/LokShobaElc2019BJP-moods.csv')
              df.info()
              <class 'pandas.core.frame.DataFrame'>
              RangeIndex: 15442 entries, 0 to 15441
            prediction 15442 non-null int64
polarity 15442 non-null float64
subjectivity 15442 non-null float64
compound 15442 non-null float64
neg
                                         15442 non-null float64
              neu
                                         15442 non-null float64
              pos
                                          15442 non-null object
              mood
              tweet 15442 non-null object created_at 15442 non-null object
              favourites count 15442 non-null int64
              statuses_count 15442 non-null int64
followers_count 15442 non-null int64
             retweeted 15442 non-null int64
retweet_count 15442 non-null int64
retweeted_text 15332 non-null object
location 15442 non-null object
hashtags 15442 non-null int64
user_mentions 15442 non-null int64
symbols 15442 non-null int64
              symbols
                                          15442 non-null int64
                                           15442 non-null int64
              urls
                                           1156 non-null object
              dtypes: bool(1), float64(6), int64(10), object(6)
              memory usage: 2.6+ MB
```

LABEL CONSOLIDATION

In [76]:	<pre>df.mood.value_counts()</pre>		
Out[76]:	dominance	6969	
	joy	2876	
	arousal	1677	
	sadness	1196	
	anger	999	
	neutral	827	
	fear	453	
	faith	445	
	Name: mood,	dtype: int64	

Table 5.1: Value of occurrence of moods (BJP)



Graph 5.1: Sentiment of public towards BJP

LSTM MODELING

- Vectorize tweet content, by transforming every content into either an arrangement of numbers or into a vector.
- Point of confinement the informational collection to the best 5,0000 words.
- Set the maximum number of words in each tweet at 250.

```
In [91]: def print plot(index):
             example = df[df.index == index][['tweet', 'mood']].values[0]
             if len(example) > 0:
                 print(example[0])
                 print('mood:', example[1])
         print plot(1)
         opposition statehood delhi confession lied elections
         mood: anger
In [89]: print plot(106)
         president amit shah party's election incharge piyush goyal visit today
         mood: dominance
In [92]: # The maximum number of words to be used. (most frequent)
         MAX NB WORDS = 50000
         # Max number of words in each complaint.
         MAX SEQUENCE LENGTH = 250
         # This is fixed.
         EMBEDDING DIM = 100
         tokenizer = Tokenizer(num words=MAX NB WORDS, filters='!"#$%&()*+,-./:;<=>?@[\]^ [{}~', lower=True)
         tokenizer.fit_on_texts(df['tweet'].values)
         word index = tokenizer.word index
         print('Found %s unique tokens.' % len(word_index))
         Found 16272 unique tokens.
In [93]: X = tokenizer.texts to sequences(df['tweet'].values)
         X = pad sequences(X, maxlen=MAX SEQUENCE LENGTH)
         print('Shape of data tensor:', X.shape)
         Shape of data tensor: (15442, 250)
In [95]: Y = pd.get dummies(df['mood']).values
         print('Shape of label tensor:', Y.shape)
         Shape of label tensor: (15442, 8)
In [96]: X train, X test, Y train, Y test = train test split(X,Y, test size = 0.10, random state = 42)
         print(X train.shape, Y train.shape)
         print(X test.shape, Y test.shape)
```

TRAIN TEST SPLIT

```
In [96]: X train, X test, Y train, Y test = train test split(X,Y, test size = 0.10, random state = 42)
          print(X train.shape, Y train.shape)
          print(X test.shape, Y test.shape)
          (13897, 250) (13897, 8)
          (1545, 250) (1545, 8)
In [101]: import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          from keras.preprocessing.text import Tokenizer
          from keras.preprocessing.sequence import pad sequences
          from keras.models import Sequential
          from keras.layers import Dense, Embedding, LSTM, SpatialDropoutlD
          from sklearn.model selection import train test split
          from keras.utils.np utils import to categorical
          from keras.callbacks import EarlyStopping
          from keras.layers import Dropout
          import re
          from nltk.corpus import stopwords
          from nltk import word tokenize
          STOPWORDS = set(stopwords.words('english'))
          from bs4 import BeautifulSoup
          import plotly.graph objs as go
          import plotly.plotly as py
          import cufflinks
          from IPython.core.interactiveshell import InteractiveShell
          import plotly.figure factory as ff
          InteractiveShell.ast node interactivity = 'all'
          from plotly.offline import iplot
          cufflinks.go offline()
          cufflinks.set config file(world readable=True, theme='pearl')
In [105]: model = Sequential()
          model.add(Embedding(MAX NB WORDS, EMBEDDING DIM, input length=X.shape[1]))
          model.add(SpatialDropout1D(0.2))
          model.add(LSTM(100, dropout=0.2, recurrent dropout=0.2))
          model.add(Dense(8, activation='softmax'))
          model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy'])
          print(model.summary())
```

Layer (type)	Output	Shape	Param #
embedding_19 (Embedding)	(None,	250, 100)	5000000
spatial_dropout1d_2 (Spatial	(None,	250, 100)	0
lstm_12 (LSTM)	(None,	100)	80400
dense_14 (Dense)	(None,		808

Total params: 5,081,208

Trainable params: 5,081,208

Non-trainable params: 0

None

- The primary layer is the inserted layer that utilizes 100 length vectors to speak to each word.
- SpatialDropout1D performs variational dropout in NLP models.
- The following layer is the LSTM layer with 100 memory units.
- The output layer must make 8 yield qualities, one for each class.
- Actuation work is SoftMax for multi-class characterization.
- Since it is a multi-class order issue, categorical_crossentropy is utilized as the misfortune work.

```
Tn |1017:
         history = model.fit(X_train, Y_train, epochs-epochs, betch_size-batch_size,
                           validation_split=0.1.callbacks=[BarlyStopping(monitor="val loss", patience=), min_delta=0.1001)))
         Train on 12507 samples, validate on 1290 samples
         Epoch 1/5
         12507/12507 I=
                                           -----] - 148s 12ms/steg - [oss: 1.5775 - acc: 0.4729 - val_loss: 1.3339 - val_s
         per 0.5331
         Bpoch 2/5
12507/12507
                                               =) - 145a 12ma/step - Loss: 1.0724 - ado: 0.4401 - val_loss: 1.0018 - val_s
         per 0.6763
         Booch 1/5
         12597/12507
                                                -) - 144x 12ms/step - loss: 0.5986 - acc: 0.8882 - val_loss: 0.8788 - val_s
         per 0.7237
         Booch 4/5
         11507/12500 1-
                                              --- - 131x 18ms/step - loss: 0.2986 - acc: 0.3985 - val_loss: 0.8994 - val_a
         ec: 0.7482
         Rooch 5/5
         11507/12507 1
                                     ect 0.7453
```

Table 6.1: Training model for epochs value 6

The primary layer is the Embedded layer that utilizes 32 length vectors to speak to each word. The following layer is the LSTM layer with 100 memory units (smart neurons). At long last, since this is a grouping issue we utilize a Dense yield layer with a solitary neuron and a sigmoid enactment capacity to make 0 or 1 expectations for the two classes (great and terrible) in the issue.

Since it is a binary classification issue, log loss is utilized as the loss function (binary_crossentropy in Keras). The proficient ADAM optimization algorithm enhancement calculation is utilized. The model rapidly overfits the issue. A huge cluster size of 64 surveys is utilized to space out weight refreshes.

We can see dropout having the ideal effect on preparing with a marginally slower pattern in combination and for this situation a lower last precision. The model could most likely utilize a couple of more ages of preparing and may accomplish a higher ability (attempt it a see).

On the other hand, dropout can be connected to the info and intermittent associations of the memory units with the LSTM definitely and independently.

Keras gives this capacity parameters on the LSTM layer, the dropout for designing the info dropout and recurrent_dropout for arranging the repetitive dropout. For instance, we can alter the primary guide to add dropout to the info and intermittent associations as pursues:

MAPPING OF ACCURACY AND DATA LOSS

```
In [108]: plt.title('Loss')
    plt.plot(history.history['loss'], label='train')
    plt.plot(history.history['val_loss'], label='test')
    plt.legend()
    plt.show();
```

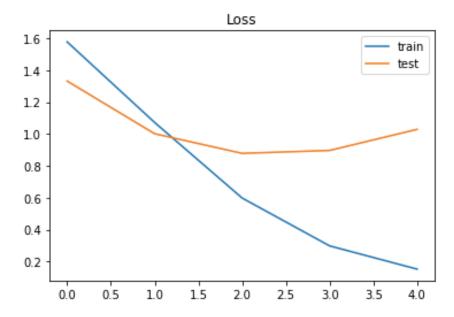


Figure 6.1: Loss depiction on training v/s testing model

```
In [109]: plt.title('Accuracy')
    plt.plot(history.history['acc'], label='train')
    plt.plot(history.history['val_acc'], label='test')
    plt.legend()
    plt.show();
```

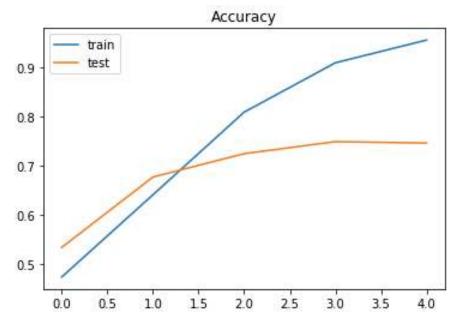


Figure 6.2: Accuracy depiction on training v/s testing model

The plots propose that the model has a little over fitting issue, more information may help, yet more epochs won't with the present data.

TEST WITH A NEW COMPLAINT

The model works fine for new tested results.

Prediction and keywords generated correctly.

REGRESSION ALGORITHMS

RIDGE REGRESSION

```
*lin_reg.py - /Users/ritika/Downloads/lin_reg.py (3.7.0)*
import numpy os np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.metrics import mean_squared_error, r2_score
# generate random data-set
#np.random.seed(8)
#x = np.random.rand(100,2)
#y = 2 + 3*x + np.random.rand(100,2)
#print(x)
df = pd.read_csv('C:\\Users\\ADMIN\\Desktop\\eci_data_1951_2029\\voter.csv')
#type(df['Electors'])
x = np.reshape(df['Electors'].values,(len(df), 1))
y = np.reshape(df['Voters'].values, (len(df),1))
# sckit-learn implementation
print(x)
# Model initialization
#regression_model = LinearRegression()
#regression_model = LinearRegression()
regression_model = Ridge(alpha=10.5)
#Fit the data(train the model)
regression_model.fit(x, y)
y_predicted = regression_model.predict(x)
# model evaluation
rmse = mean_squared_error(y, y_predicted)
r2 = r2_score(y, y_predicted)
# printing values
print('Slope:' ,regression_model.coef_)
print('Intercept:', regression_model.intercept_)
print('Root mean squared error: ', rmse)
print('R2 score: ', r2)
# plotting values
# data paints
plt.scatter(x, y, s=10)
plt.xlabel('x')
plt.ylabel('y')
# predicted values
plt.plot(x, y_predicted, color='r')
plt.show()
```

Ln: 46 Col: 0

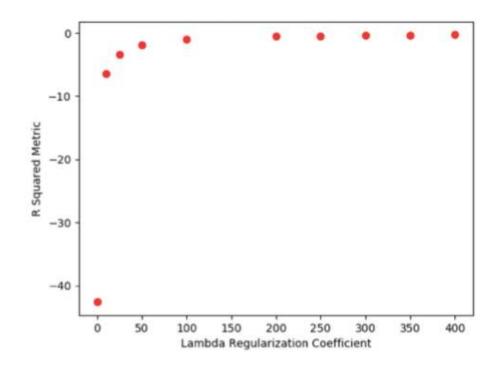


Figure 7.1: Ridge regression on unclean data

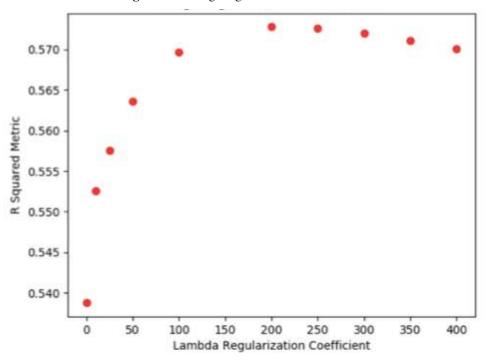


Figure 7.2: Ridge regression on clean data

SIMPLE LINEAR REGRESSION MODEL AND LASSO REGRESSION

We presently depict the procedure through which we directed regression on our data. We outline the regression issue as an endeavor to utilize the previously mentioned statistic information to anticipate the portion of voters who pick candidates by region. We perceive promptly that we have couple of precedents relative to the quantity of highlights in our model. For the 2014 race, we have 820 precedents and 897 highlights. Utilizing the information cleaning strategy portrayed in segment 2, we can decrease the quantity of highlights in our model from 897 to 188. We speculate that utilizing LASSO relapse would suit our concern well, the same number of the highlights are probably going to be futile or excess. LASSO regularization regularizes utilizing the L1 standard, and seeks to optimize the loss function.

$$L = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \sum_{j=1}^{p} ||\beta_j||^1$$

All in all, we see that LASSO relapse boundlessly beats Ridge relapse on the uncleaned information. After manually cleaning the data, we find that Ridge regression and LASSO regression perform similarly, with Ridge relapse giving more consistent outcomes which are correspondingly less touchy to changes in the esteem λ . This recommends a little measure of highlights from our unique informational collection are sufficient to describe our model to define decision expectations giving election predictions.

All the more by and large, our outcomes here likewise recommend that when the information is too intricate to even consider being physically cleaned and just restricted information are accessible, LASSO regression can possibly be a valuable apparatus for distinguishing superfluous or repetitive highlights.

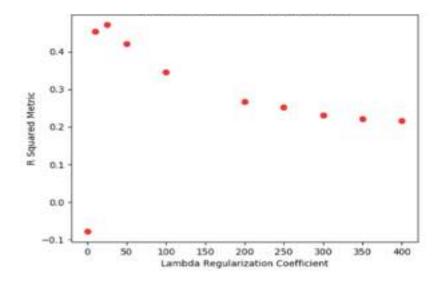


Figure 7.3: LASSO regression on unclean data

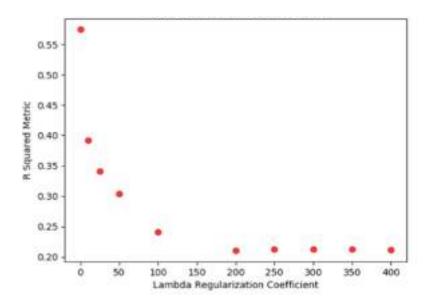


Figure 7.4: LASSO regression on clean data

```
mport numpy as no
                                      lin_reg.py - /Users/ritika/Downloads/lin_reg.py (3.7.0).
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.metrics import mean_squared_error, r2_score
# generate candon data-set
Anp.rondom.seed(0)
#x = np.random.rand(180,2)
xy = 2 + 3^{9}x + np.random.rand(180,2)
#print(x)
df = pd.read_csv("C:\\Users\\ADMIN\\Desktop\\eri_data_1951_2819\\vater.csv")
#type(df['Electors'])
x = np.reshape(df['Electors'].values,(len(df), 1))
y = np.reshape(df['Voters'].values, (len(df),1))
# sckit-learn implementation
print(x)
# Model initialization
regression_model = LinearRegression()
Wregression_model = LinearRegression()
Wregression_model = Ridge(alpho=10.5)
# Fit the data(train the model)
regression_model.fit(x, y)
# Predict
y_predicted = regression_model.predict(x)
# model evaluation
rmse = mean_squared_error(y, y_predicted)
r2 = r2_score(y, y_predicted)
# printing values
print('Slope:' ,regression_model.coef_)
print('Intercept:', regression_model.intercept_)
print('Root mean squared error: ', rwse)
print('R2 score: ', r2)
# plotting values
# data points
plt.scatter(x, y, s=10)
plt.xlabel('x')
plt.ylabel('y')
# predicted values
plt.plot(x, y_predicted, color='r')
plt.show()
```

Ln: 36 Col: 17

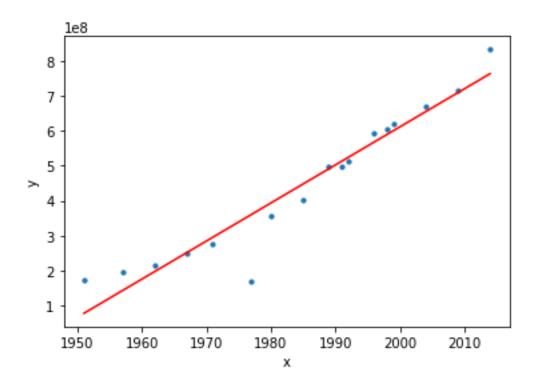


Figure 7.5: Linear regression on unclean data

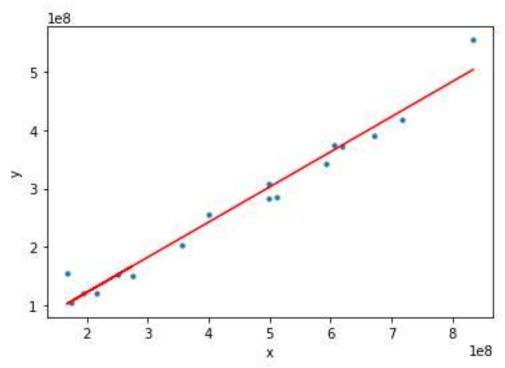


Figure 7.6: Linear regression on clean data

CLASSIFICATION ALGORITHMS

We currently outline our undertaking as classification problem. All the more explicitly, we utilize similar data to prepare and test our models, characterizing a positive guide to be one where more prominent than the greater part of the voters pick an INC candidate, and a negative guide to be one where not exactly 50% of the voters pick a BJP competitor. To tackle the characterization issue, we utilize calculated logistic regression (with both L1 and L2 regularization), a delicate edge SVM classifier, and decision trees. We play out these methods on both the cleaned and uncleaned variants of our information to determine the nearness of analysis like what we saw in segment 3.1. Here, we save 720 precedents for preparing and 100 case for testing. On account of calculated regression and the SVM, we utilize 120 of the 720 preparing precedents as an approval set, to pick λ (regularization coefficient) and C (punishment on blunder term) separately. To create our outcomes, we pick regularization quality for strategic relapse and SVM by tuning regularization parameters (λ and C respectively) through matrix look, measuring our exhibition on the approval set. In Tab. 1 and Tab. 2, we show the characterization exactnesses we accomplish on the uncleaned and cleaned information, separately.

Election C	lassification	Accuracy on	Uncleaned Data
Method	Training	Validation	Test
LR, L1-reg	1.0	0.77	0.8
LR, L2-reg	1.0	0.71	0.74
SVM	0.98	0.77	0.73
Decision Trees	1.0	N/A	0.81

Table 8.1: Characterization exactnesses: uncleaned data

Table: Order exactness or Classification accuracy on uncleaned information of PCs casting a ballot GOP utilizing calculated logistic regression, SVM classifiers, and decision trees. We utilized a matrix inquiry and execution on a held-out approval set to discover ideal hyperparameters

Method	Training	Validation	Test
LR, L1-reg	0.85	0.85	0.79
LR, L2-reg	0.86	0.89	0.8
SVM	0.8	0.82	0.81
Decision Trees	0.99	N/A	0.88

Table 8.2: Characterization exactnesses: cleaned data

Table: Characterization precision of Classification accuracy on cleaned information of areas casting a ballot GOP utilizing strategic logistic regression, SVM classifiers, and choice trees. We utilized a matrix pursuit and execution on a held-out approval set to discover ideal hyperparameters.

Our work with classification arrangement yields a few interesting results. Outstandingly, we can acquire a 0.88 grouping exactness on inconspicuous test information with generally equivalent extents of positive and negative examples. Plainly, we can separate well between PCs that vote GOP, and regions that don't, founded exclusively on statistic data. Further, we see that while the two regularization procedures produce comparative results on the cleaned information, L1 regularization immeasurably beats L2 regularization on the un-cleaned informational indexes. This outcome again proposes that a large portion of the information we expelled in cleaning was immaterial, just prompting a pointlessly unpredictable model. As L1 regularization drives singular parameters to 0 not at all like L2 regularization, L1 regularization adequately pruned good for nothing highlights when preparing. Besides, we see that decision trees yield the best test precision of the order techniques tried. The decision trees result in an inadequate arrangement, which can be checked by just a couple of highlights having high "significant" in our model. The XGBoost (Chen and Guestrin, 2016) "significance score" is a proportion of the data increase of a specific component arrived at the midpoint of over the trees in a helped model. Rotating on just a couple of unmistakable highlights with high data gain allowed our supported decision trees to perceive the most significant highlights and sum up well.

CLUSTERING

To check whether our information contained any normal segmentation that could be learned, we test a Gaussian Mixture Model on our data. We utilize the sci-kit (Pedregosa et al., 2011) learn package and used the EM algorithm to fit k clusters to our data. This segment will talk about how these outcomes coordinated different strategies.

We first train exclusively on 2014 statistic data. Utilizing our cleaned dataset, for instance information that does not utilize numerous sections, and so forth, we can accomplish combination utilizing k=2 to k=8 groups. Since our information contains a couple of exceptions as far as populace, pay, or different variables, we regularly watch a couple of groups that catch these few points.

There are some significant insights for our bunches utilizing a couple of various number of groups. Outcomes are plotted along the two most significant highlights.

Presently we might want to break down the consequences of our simplest and most robust clustering, that is k = 3. It is exceptionally obvious to see that our clusters are for the most part isolated along populace lines. There are a lot of rustic regions that have exceptionally low populace and differing ages. These districts will in general vote BJP generally 70% of the time, which matches with regular instinct that country territories are republican inclining.

This plot likewise confirms our instinct that substantial urban focuses vote only BJP. The little cluster relating to these extensive provinces have no INC casting a ballot region. Our fair measured group, which relates to rural regions with marginally higher salary all things considered than the other two, likewise will in general vote democrat however not only. With generally 10% of these areas casting a ballot BJP, this matches with our instinct and our outcomes from different strategies.

Clustering could be utilized to produce a decision outcome. To do this, we could characterize a generative procedure that utilizes our blended Gaussian Model. Accepting delicate cluster assignments characterized by:

$$P(y = i|x) = \frac{p(x|y = i)p(y = i)}{\sum_{i} p(x|y = i)p(y = i)}$$

= $\mathcal{N}(x; \mu_i, \sigma_i^2)\pi_i/\mathcal{Z}$,

where Z speaks to the normalization constant steady, π i describes the likelihood of being in each cluster. Presently given another PC, we might want to foresee whether a district cast a BJP or INC vote. First register the soft cluster assignments for another region, and after that utilization a binomial procedure for each cluster to appoint BJP or INC. We document this utilizing V to speak to the clear-cut categorical vote variable, with R for Independent candidates

$$P(V=R|x) = \sum_i p(V=R|y=i,x) * p(y=i|x)$$

This generative procedure could be utilized to anticipate a future election given current statistic information.

ADVANCEMENT OF AI IN POLITICS

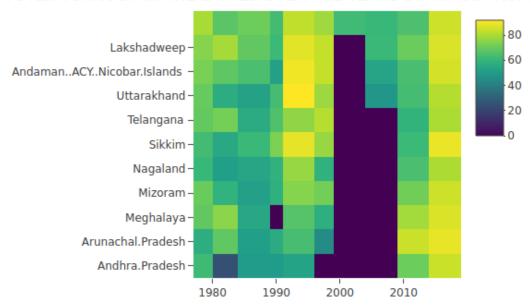
The greatest choice the triumphant political party made was to move far from the customary way to deal with voters; which is to send only one communicated message to the entire nation, covering everybody, paying little mind to age, sexual orientation, area or some other key differentiator. Utilizing Big Data, the winning candidate had the option to draw nearer to the intended interest group, improving commitment and discussing the definite things that was imperative to the voter.

A smarter methodology is to send messages that is significant to individuals, instead of worn-out updates that do nothing as well as simply report the campaigners. Big Data analytics enables the ideological groups to become more acquainted with their voters on an individual dimension. Prevalent innovation and complex instruments help find and comprehend their necessities and the various ways the voters can be drawn nearer. This is a colossal arrangement for the universe of political issues.

ENGAGING VOTERS

Generally, ideological political parties' groups depended on that minority that bolstered them wholeheartedly and relied upon them to voice their adoration on social stages to construct more mindfulness. Presently, with Big Data, a noteworthy number of voters who truly 'don't have the foggiest idea' can be focused on. Give us a chance to call these don't-knows, gliding voters. Machine-based learning can help with more astute focusing of such coasting voters. These voters can likewise be isolated into numerous different classifications, for example, the segment that can be influenced into settling on a choice, another segment that is uncertain and numerous others. In this way, changing over gliding voters can get in votes that generally were never conceivable to get.

VOTER TURNOUT IN THE STATES OVER THE YEARS STARTING FROM :



Graph 10.1: Heatmap for voting percentage across Phase 1 states: 1951 - 2019

Information investigation instruments can help comprehend which segments are bound to pick and bolster a gathering. Rather than utilizing area as a parameter, Big Data analytics can produce a ton of details, for example, paper inclinations, age, and instruction foundation and look into watchwords in Facebook and Twitter channels too.

VARIOUS CHANNELS TO REACH THE VOTERS

With Big Data, AI and information mining, political parties have an edge over other people who keep concentrating just on conventional models for their battles. This edge is basically interfacing with voters by means of web-based life, a significant channel. Information mining from web-based life stages, for example, Facebook and Twitter enables gatherings to comprehend the worries, issues and feelings voters host towards their get-together and how it could be various inside the various areas of the nation.

It was such data that was utilized by India's political parties to fabricate their system, successfully target voters, enroll volunteers and improve their various channels to achieve the voter at the doorstep to customizing messages via web-based networking media accounts. Before we go there, how about we comprehend what data mining is in any case.

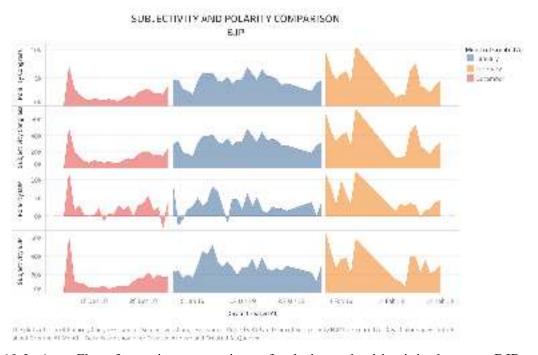
Data Mining is "Filtering through exceptionally a lot of information for helpful data. It uses artificial intelligence techniques, neural systems, and progressed factual apparatuses, (for example, bunch data) to uncover patterns, examples, and connections, which may somehow or another have stayed undetected. Rather than a specialist framework (which draws inferences from the given information based on a lot of principles) information mining endeavors to find concealed guidelines fundamental the information. Additionally, called data surfing, it empowers clients to find examples and bits of knowledge from enormous scale archives.

IDEOLOGICAL POLITICAL GROUPS MOVING AWAY FROM TRADITIONAL MODELS

Being enlivened by effective battles of Obama's Big Data in decisions, even ideological groups in the UK have gradually moved far from the customary models as of late. Both the work and the traditionalist gatherings have put intensely into their computerized mediums; they've likewise procured the equivalent advanced counselors who were a piece of the Obama group!

Data can be utilized research indeed, yet breaking down information from open responses to ideological groups, their crusades, strategies and even reactions in basic circumstances should be done in continuously. Information examination assumes a significant job in changing the final product of any crusade. It is no big surprise that India's own one of a kind Narendra Modi is viewed as a standout amongst the most innovation and online life sagacious government officials on the planet! PM Modi has no under 10k adherents on Twitter, 32 million likes on Facebook and 440 million perspectives on Google+

Modi has a place with the BJP party which won the 2014 races in India with the assistance of open-source computerized devices that put them legitimately in contact with their voters. The majority of the measurements to do that were accomplished utilizing information mining and information investigation to dive into the plenty of web-based life exercises. Indeed, even versatile clients were thought about. Be that as it may, there is no precluding a noteworthy number from claiming voters must be achieved the conventional way - direct human contact.

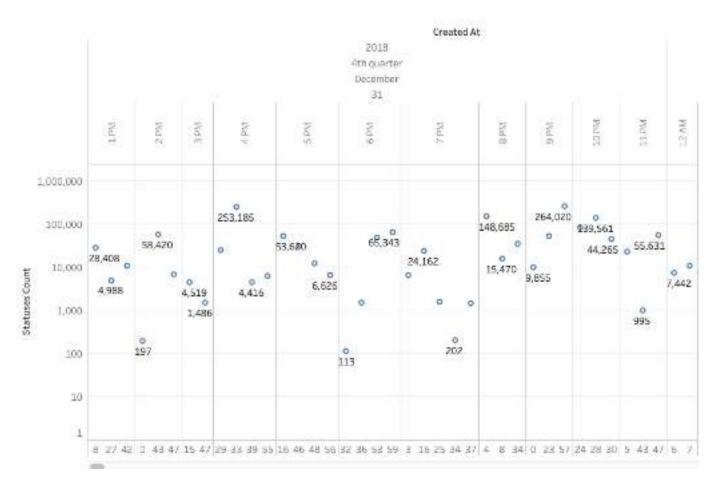


Graph 10.2: Area Chart for voting comparison of polarity and subjectivity between BJP and Congress public opinion

In any case, BJP made brilliant moves to connect with their potential voters utilizing a mix of advanced and conventional channels to enroll volunteers - both on the web and disconnected. Albeit broad communications were the committed channel for the voters certain about voting in favor of BJP, to achieve the gliding voters and even negative voters, correspondence connected at the smaller scale levels on the Internet, portable and web-based life - separated from the conventional road battles.

ELECTION DATA ANALYSIS

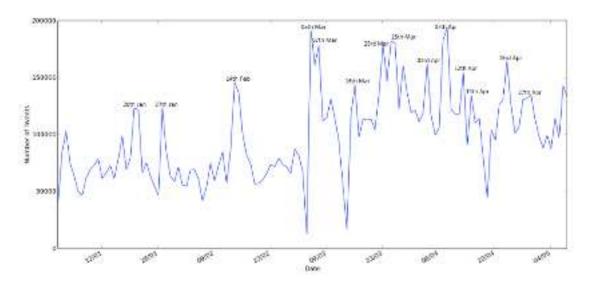
Skoric et. al. [25] in their paper considered the decisions information amid the Singapore General Elections. They discovered that however the prescient intensity of Twitter for decisions cannot be professed to be on a par with in the Germany races by Tumasjan et. al. [26], however it is still superior to risk. Their mean outright mistake was higher than that of past investigations and reasoned that Twitter is characteristic of the popular feeling. Gayo-Avello [11] in his paper considered the US Presidential Elections 2008 and indicates how examination of twitter information neglected to foresee Obama's success even in Texas. He guaranteed that the twitter information is one-sided and cannot be utilized as an agent test. He likewise tested the assumption examination utilized in the before papers.



Graph 11.1: Tweet count for one day broken down from yearly database

To the extent India General Elections 2019 were concerned, twitter information was likewise examined by Sim-plify360.1 They prepared both short summary as well as a detailed report on the elections data. They arranged a Simplify360 Social Index (SSI) to figure the ubiquity of the legislators. Mindfulness, spread, conspicuousness and positivity were 4 parameters they utilized for the figuring of their file. The investigation by the NExT Center at the National University of Singapore was a week by week analysis.2 They would discover the insights about the three noteworthy gatherings AAP, BJP and Congress from the week by week information and furthermore report the political occasions that occurred that week. Their last segment had some political audits about the three principle competitors. Kno.e.sis, an examination bunch at Wright State University additionally broke down India General Elections 2014 with the assistance of Twitris+, a semantic social web application.3 The entry demonstrated the cheerfulness for the three noteworthy gatherings. The confidence was determined taking the quantity of notices and slants of the tweets as parameters. Aside from this, there were a few entryways by news media houses that demonstrated some bit about the sort of exercises going on Online Social Media (OSM), for e.g., the pages by IBN and TOI

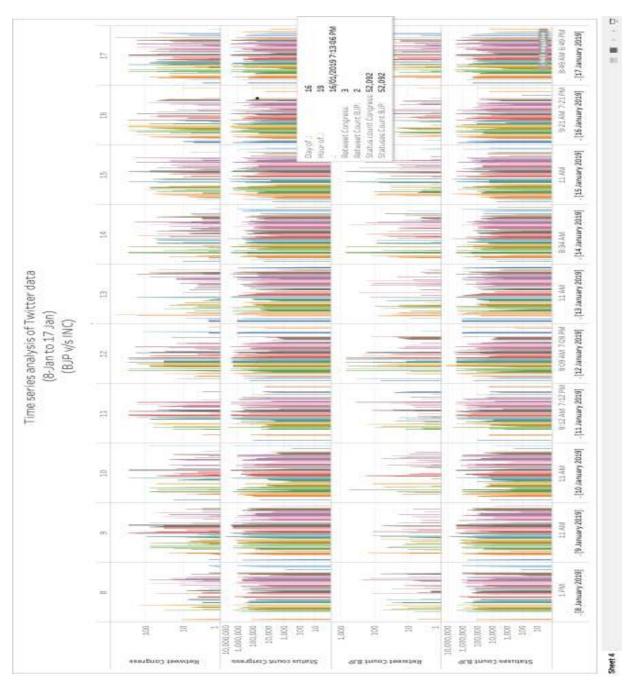
We broke down the total dataset to discover intriguing examples with regards to it and furthermore to check if the trifling things were likewise obvious in the information gathered. We found that the movement on Twitter topped amid significant occasions identified with races. It was clear from our information that the political conduct of the legislators influenced their adherents check and accordingly prominence on Twitter. One more point of our work was to locate a proficient method to arrange the political direction of the clients on Twitter. To achieve this undertaking, we utilized four distinct procedures: two depended on the substance of the tweets made by the client, one on the client-based highlights and another dependent on network recognition calculation on the retweet and client notice systems. We found that the network location calculation worked best with a proficiency of over 80%. It was likewise observed that the substance-based strategies did not admission well in the arrangement results.



Graph 11.2: Time series analysis of tweet occurrences

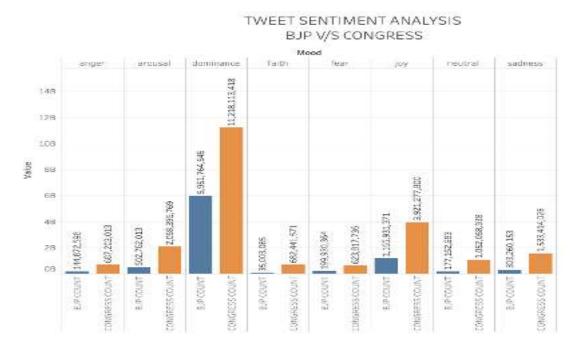
With an expect to screen the day by day approaching information, we manufactured an entryway to demonstrate the examination of the tweets of the most recent 24 hours. This entrance broke down the tweets to locate the most drifting themes, hashtags, the sort of slants gotten by the gatherings, area of the tweets and furthermore observed the ubiquity of different political pioneers and their gatherings' records on Twitter. As far as we could possibly know, this is the primary scholarly interest to investigate the races information and arrange the clients in the India General Elections 2019.

GRAPH DEPICTING THE COMPLEXITY AND VASTNESS OF DATA FROM TWITTER FOR MERELY 10 DAYS



Graph 11.3: Dashboard for Twitter data storage simultaneous comparison between BJP and Congress

Graph 11.4: Comparison between Favourite count of BJP and Congress



Graph 11.5: Comparison between Tweets count of BJP and Congress analysed with sentiment of the tweets

POLITICAL ORIENTATION PREDICTION

Despite the fact that forecast of decision results with Twitter has been a beaten issue, relatively few atentices have been made at the order of the political introduction of the clients. Conoveret. al. [9] examined the 2010 U.S. midterm races information and anticipated the introduction of the twitter clients with an effectiveness of 95%. They utilized the dormant semantic investigation for ordering the substance of the clients' tweets and discovered high connection esteems between the substance and the political arrangement of the clients.

Golbeck et.al. [12] attempted to locate the political inclinations of the devotees of famous news media's records on Twitter. They determined a political inclination score (P Score) for every one of the clients dependent on the records they were following. It was proposed that dependent on the count of the groups of onlookers' inclinations, the inclining of the particular media houses can likewise be discovered. Cohen et. al. [8] in their work tested crafted by Conover et. al. [9]. They said that the classifier created by them would not work on the off chance that it was utilized for a lot of clients who were not in all respects politically dynamic on Twitter. They partitioned the arrangement of clients into political figures, politically dynamic and moderate clients and contrasted it and the Conover et. al. informational index and found the effectiveness of the classifier to be lower for their situation.

In this segment we will look at the prevalence of the two heads, Arvind Kejriwal (AAP) and Narendra Modi (BJP). We are not taking Rahul Gandhi for the examination since he doesn't have a checked record and the record @BeWithRG is additionally not asserted by him. To think about the prominence, we have taken two estimates that are utilized in computation of the Klout score too, for example the quantity of supporters and the quantity of retweets of the tweets made by their record. We determined the Pearson's relationship factor of every one of these two parameters with the Klout score. We found the estimation of Pearson's connection between the Klout score and number of devotees to be 0.956, though it was 0.463 just between the Klout score and the normal number of retweets. So we can say that the quantity of devotees is a superior proportion of ubiquity.

We were following the records of these pioneers since long and endeavoured to see their number of adherents for every day. The record of Narendra Modi, screen name @narendramodi has been on Twitter since January 2009, while Arvind Kejriwal's record @ArvindKejriwal has been since November 2011. Diagrams appearing number of adherents for both these pioneers are appeared in Figure 4.8. We can see that the quantity of devotees for Kejriwal in the start of the chart is about 0.4 million, while it is more than 1.9 million for Modi. There have been steep ascent in the chart for Kejriwal around the dates eighth Dec (when he won Delhi gathering races), 29th Dec (when he made vow as the Delhi CM), twentieth Jan (when he organized dissent against Delhi police) and the lofty ascent to some degree standardized after 28th Jan. Anyway there was no fall in the bend around fourteenth Feb (when he quit as Delhi CM) similar to the hypothesis in the media. When we take a gander at Modi's diagram, we don't locate any precarious ascent or fall even after his presentation as PM applicant on thirteenth Sept, the bend has been always expanding with the exception of a couple of glitches on 23rd Nov (which could be because of ascend in prevalence of AAP).

To think about the two diagrams on an equivalent scale, we looked at the rate change in the quantity of supporters for every day for both these pioneers. The diagram in Figure 4.9 demonstrates the correlation. We can see that the adjustment in Kejriwal's supporters was constantly higher than Modi's, which never topped. If it's not too much trouble note that the drop in this diagram does not demonstrate a drop in number it just demonstrates that the ascent in the quantity of supporters was not as high as the earlier day. The change was never negative. The normal of progress in level of supporters for Kejriwal and Modi were observed to be 0.49% and 0.25% separately. The normal number of supporters every day for Kejriwal was 1,372, though it was 2,020 for Modi. So in the event that we take a gander at it with this angle, Modi has more devotees and along these lines progressively well known.

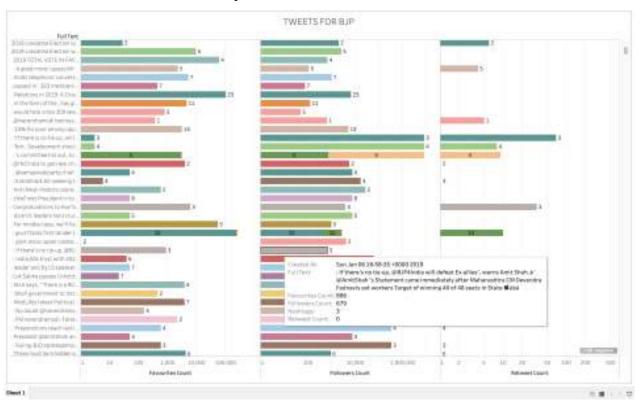
We would now take a gander at the retweet check of the tweets made by Kejriwal and Modi. For this we took last 1,000 tweets made by both these pioneers and recovered the retweet tally from the of followers, JSON object and plotted it on a diagram against the course of events. This chart can be found in the Figure 4.10. Despite the fact that Modi has the most extreme retweet tally of

5,000 on a tweet, the retweet mean Kejriwal's retweets are commonly higher. This can likewise be set up by looking at the normal retweet mean their last 1,000 tweets, which is 887 for Arvind Kejriwal, though 612 for Modi. So with this viewpoint, Kejriwal is more well-known than Modi. In any case, since we asserted that the quantity of supporters is a somewhat higher connected parameter to the Klout score, we can presume that Modi would be advised to prominence than Kejriwal.

Since we were following the records of different gatherings and government officials, one thing that grabbed our eye was the quantity of tweets made by the record of BJP, named @BJP4India. The tweet check of this record went from 2538 on Feb 01 to 96,462 on Apr 30. They made more than 20,000 on Apr 07 and over 100% ascent in tweets on a few events. This unmistakably demonstrates the way BJP was proactively advancing itself and its PM competitor on twitter, which could be a conceivable explanation behind their lead in practically all charts.

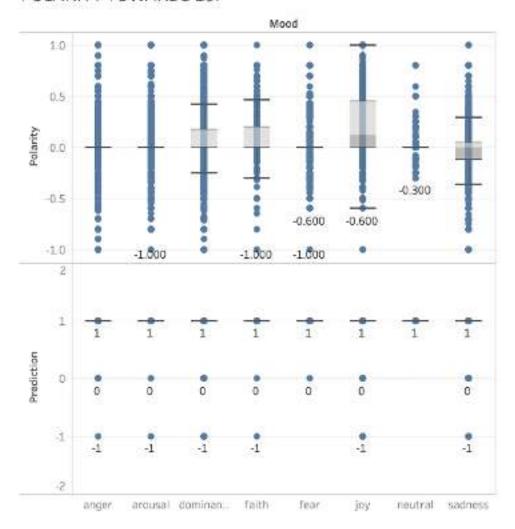
We additionally endeavoured to take a gander at the likelihood of the records being bot accounts. For this reason, we utilized an instrument by Indiana University.1 This apparatus took the screen names of the records as information and the dissected the record for being a bot or not. The end was made based on system investigation, the tweets made and some different variables. We utilized this instrument to break down somewhere in the range of 50 odd profiles from our dataset. What's more, we discovered that practically every one of the profiles were not bots. The conceivable explanation behind this could be that since we had hand-picked these profiles, the odds of them being bots was less. Aside from this we additionally checked for a couple of profiles which were tweeting about decisions and discovered that profiles like Tips4DayTrader were observed to be bots.

Table 12.1: Sample database retrieved from Twitter for BJP



Graph 12.1: Tweet Favourite count v/s Follower count v/s Retweet count for BJP database

POLARITY TOWARDS BJP



Graph 12.2: Polarity and prediction for BJP tweets – sentiment wise

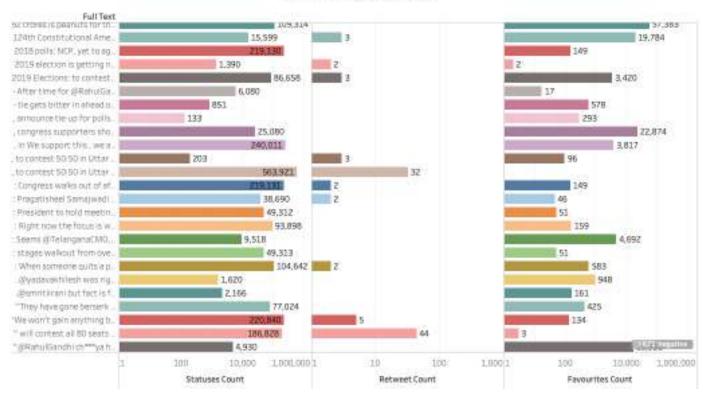
WORDCLOUD FOR BJP

Figure 12.1: BJP related tweet word cloud

WORD CLOUD FOR CONGRESS

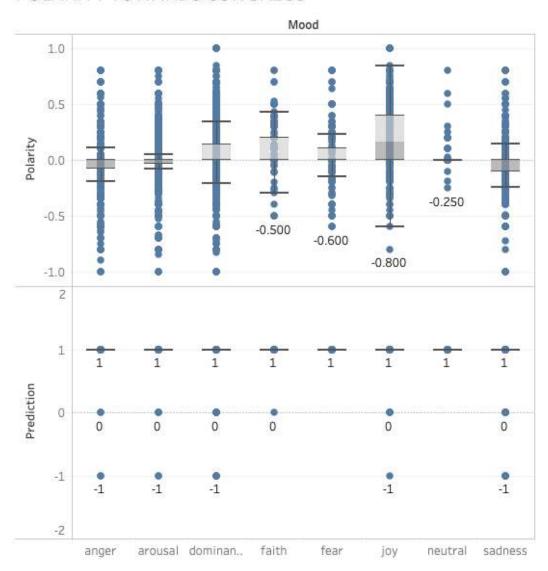
Figure 12.2: Congress related tweet word cloud

Table 12.2: Sample database retrieved from Twitter for Congress



Graph 12.3: Tweet Favourite count v/s Follower count v/s Retweet count for Congress database

POLARITY TOWARDS CONGRESS



Graph 12.4: Polarity and prediction for Congress tweets – sentiment wise

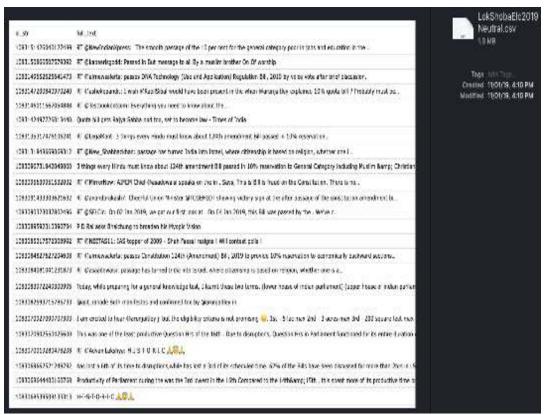


Table 12.3: Sample database retrieved from Twitter for general elections

WORDCLOUD FOR NEUTRAL TWEETS

Figure 12.5: Lok Sabha Election related tweet word cloud

SENTIMENT ANALYSIS

We broke down the total dataset to discover fascinating examples with regards to it and furthermore to confirm if the paltry things were likewise obvious in the data gathered. We found that the movement on Twitter crested amid significant occasions identified with races. It was apparent from our data that the political conduct of the lawmakers influenced their devotees check and in this manner ubiquity on Twitter. One more point of our work was to locate an effective method to arrange the political introduction of the clients on Twitter. To achieve this assignment, we utilized four distinct systems: two depended on the substance of the tweets made by the client, one on the client-based highlights and another dependent on network discovery calculation on the retweet and client notice systems. We found that the network discovery calculation worked best with a proficiency of over 80%. It was likewise observed that the substance-based techniques did not toll well in the arrangement results. With a mean to screen the everyday approaching information, we fabricated an entryway to demonstrate the investigation of the tweets of the most recent 24 hours. This gateway broke down the tweets to locate the most slanting points, hashtags, the sort of notions gotten by the gatherings, area of the tweets and furthermore checked the ubiquity of different political pioneers and their gatherings' records on Twitter. As far as we could possibly know, this is the primary scholastic interest to break down the races information and arrange the clients in the India General Elections 2019.

Sentiment analysis is the computational investigation of suppositions, assumptions, assessments, mentalities, perspectives and feelings communicated in content. It alludes to a characterization issue where the primary center is to foresee the extremity of words and after that order them into positive or negative slant. Assumption examination over Twitter offers individuals a quick and powerful approach to gauge the open's emotions towards their gathering and government officials. The essential issue in past conclusion examination strategies is the assurance of the most fitting classifier for a given order issue. On the off chance that one classifier is browsed the accessible classifiers, at that point there is no surety in the best execution on inconspicuous information. So, to decrease the danger of choosing an improper classifier, we are joining the yields of a lot of classifiers. In this way in this paper, we utilize a methodology that consequently arranges the conclusion of tweets by joining AI classifiers with vocabulary-based classifier. The new mix of classifiers are SentiWordNet classifier, innocent Bayes classifier and shrouded Markov model

classifier. Here inspiration or antagonism of each tweet is controlled by utilizing the lion's share casting a ballot guideline on the aftereffect of these three classifiers. In this manner we were utilized this slant classifier for finding political opinion from constant tweets. In this way we have an improved exactness in conclusion examination utilizing classifier troupe Approach. Our strategy likewise utilizes refutation dealing with and word sense disambiguation to accomplish high precision.

ELECTIONS AND SOCIAL MEDIA

There was a noteworthy change in the General Elections 2014 from the General Elections 2009; this was the adjustment in the pretended by the web-based social networking amid the races. It has been watched worldwide that the majority rules systems have been taking part in discoursed with the general population over the online networking [16]. According to Internet and Mobile Association of India (IAMAI) the Internet clients in India are relied upon to be 243 million by June 2014, denoting a 28% development from June 2013.4 There are an assortment of online life stages available, e.g., Facebook, Twitter, Pinterest, Instagram, Tumblr, Flickr, Google+, LinkedIn to give some examples. The general population are progressively utilizing these stages to express their perspectives on various points. India has been at the cutting edge of the development stories in the quantity of clients of these online life stages. The Facebook being the most well-known has 114.8 million Indian users.5 Twitter positions second in the quantity of clients with 33 million clients from India.

Consider it an impact of the US Presidential Elections or not, yet the web-based life stages were utilized by the gatherings for their crusades. Practically all the significant gatherings made their essence felt on the internet-based life with the official records and checked pages of their pioneers and the gatherings. According to the media reports, proficient assistance was taken by the gatherings to improve the picture of their gathering and pioneers on the interpersonal interaction locales. According to an investigation of IAMAI, there were around 160 odd voting public out of 543 that were probably going to be impacted by these new media and furthermore influence 3 – 4% of votes.6 Some gatherings like the BJP and Congress utilized Google+ Hangout to lead gatherings with people.7 Candidates utilized the vehicle of broadcast meets on Facebook and WhatsApp informing administration to associate with a great many urban voters. Crusade recordings were transferred on YouTube by a few gatherings. A great deal of battling promotions was seen on Facebook amid the races, while every one of the photos of Rahul Gandhi's energizes were transferred on an Instagram account. Google did its bit by acquainting the Google Election center point with engage voters and by giving more data about the races and the candidates.

DATA GATHERED

There are 50 million Twitter clients in the United States and utilize English as their medium to communicate on Twitter.10 But in India, the scenario is different with as many as 1,616 parties and almost 8,000 competitors. The populace in India utilizing Twitter is minutely little when contrasted with the genuine casting a ballot populace. With individuals discussing such a large number of gatherings and applicants and that also in transliterated messages, the issue of recognizing their political tendency ends up more extensive and intriguing. Every one of these variables alongside sheer measure of information inspired us to investigate the information and find intriguing examples with regards to it and on the off chance that it was in a state of harmony with the continuous occasions as they were going on.

So we can broadly specify the aims of our work as follows:

- 1. To dissect and draw important derivations from the gathering of tweets gathered over the whole term of races
- 2. To check the achievability of improvement of an arrangement model to distinguish the political introduction of the twitter clients dependent on the tweet content and other client based highlights.
- 3. To build up a framework to break down and screen the race related tweets on regular routine.

TRAINING THE DATASET USING MACHINE LEARNING

```
In [1]: import os
          import pandas as pd
          import matplotlib
          import numpy as np
          from sklearn.preprocessing import LabelEncoder
          matplotlib.use('TkAgg')
          import matplotlib.pyplot as apit
          import seaborn as sas
          sns.set(style="darkgrid")
          sns.set(font_scale=1.3)
          import nitk
          from nltk.tokenise import *
In [10]: import inspect
          fileDir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
filePath = "/Osers/ritika/Downloads/publicsentiments/"
In [11]: files = os.listdir(filePath)
In [12]: def label_encode(mood);
               label_encoder = LabelEncoder()
               integer_encoded = label_encoder.fit_transform(mood)
le name_mapping = dict(zip(label_encoder.classes_, label_encoder.transform(label_encoder.classes_)))
              return integer_encoded
In [14]: labels = ['BJP', 'Congress', 'BJP-Congress', 'Neutral']
          titles - ['Parts of Speech (Adjectives/Adverbs/Proper Mouns) Tagging for BJP',
                     'Parts of Speech (Adjectives/Adverbs/Proper Mouns) Tagging for Congress',
'Parts of Speech (Adjectives/Adverbs/Proper Mouns) Tagging for BJP and Congress',
                      'Parts of Speech (Adjectives/Adverbs/Proper Mouns) Tagging for Other Parties' ]
In [17]: import tweepy
          import sys
          import hashlib
          import cay
          import json
          import preprocessor as p
In [18]: API KEY = "XZG9Aa26fYdKQSaTjyboOb9wu"
          AFI_SECRET = "cEMMMDDdFqluEG0t30ibbEXL0EXif0cW4RLqH3sLDC15D6W7AE"
          auth = tweepy.AppAuthHandler(API KEY, API SECRET)
          apl = tweepy.API(auth, wait on rate limit-True,
                   weit on rate limit notify True)
In [19]: search_congress = ['congress', "gandhi', "sonia']
          search bjp= ('modi', 'bjp', 'narendramodi')
search both= ('congress', 'bjp')
          retweet dict = ()
In [20]; csvFile_CO = open('/Users/ritika/Downloads/train/rav/LokSbobaElc2019Coog.cav', 'a')
          csvFile_BJ = open('/Users/ritika/Downloads/train/raw/LokShobaElc2019BJF.csv', 'a')
csvFile_BO = open('/Users/ritika/Downloads/train/raw/LokShobaElc2019Both.csv', 'a')
          csvFile NEU - upen('/Users/ritika/Downloads/train/raw/LokShobaElc2019Neutral.csv', 'a')
In [21]: csvCongWriter = csv.writer(csvFile_CO)
          csvBjpWriterBj = csv.writer(csvFile BJ)
          csvBothWriterBo = csv.writer(csvFile_BO)
          csvWriterNeutral = csv.writer(csvPile NEU)
```

```
In [22]: hastags = ['foongresswins']
         if (not spi) |
             print ("Can't Authenticate")
             sym.exit(-1)
In [23]: Import sys
         import jsospickle
         import on
In [35]: searchQuery = ['FELECTION2019']
In [36]: maxTweets = 1000000000 # Some arbitrary large number
         tweetsPerGry = 100 # this is the max the API permits fName = 'tweets.txt'
In [37]: sinceId = "2014-01-01"
In [38]: tweetCount = 0
         print('Downloading max (0) tweets'.format(maxTweets))
         def writeToCSVResults()sonData, result_both, result_anti,
                                result cong, result bjp, clean text, clean retweet text):
             retweeted text = clean retweet text
             if('location' in jsonData['user'] and len(jsonData['user']['location']) > 0);
                  location = jsonData['user']['location'].replace(',', '
                  location - 'Unknown'
             if (result both or result anti):
                  csvBothMriterBo.writerow([jsonData['id_str'], clean_text,
                                            jsonData[ created at'], jsonData[ user'][ favourites count'],
                                            jsonData[ user'][ statuses_count ],
                                             jsonData[ user'][ followers_count'].
                                            jsonData[ retwested'], jsonData[ retwest count'],
                                            retweeted text,
                                             location, len(jeonData('entities')|'heshtags'|), len(jeonData('entities')
                                                                                                     ('user mentions')),
                                             len(jsonData['entities']['symbols']), len(jsonData['entities']['urls'])])
              elif (result cong):
                  csvCongWriter.writerow([jeonData['id_str'], clean_text,
                                            jsonData[ 'created at'], jsonData[ 'user'][ 'favourites_count'],
                                             jsonData[ user' [ statuses count ],
                                             jsonData[ user'][ followers count'],
                                            jsonData[ retweeted ], jsonData[ retweet count ],
                                            retweeted text,
                                            location, len(jsonData['entities']['hashtags']),
                                            len(jsonData('entitles')['user_mentions']),
                                           len(jsonData['entities']['symbols']), len(jsonData['entities']['urls']]]]
              elif (result bjp):
                  csvBjpWriterBj.writerow([jsonData['id_str'],clean_text,
                                            jschData[ 'created_at'], jschData[ 'user'][ 'favourites_count'],
                                            jsonData[ user'][ statuses count ],
jsonData[ user'][ followers count'],
                                            jsonData[ retweeted ], jsonData[ retweet count ],
                                            retweeted text,
                                            location, len(jsonData['entities']
                                                           ['hashtags']), len(jscnData['entitles']['user_mentions']),
                                            len(jsonData|'entities']['symbols']), len(jsonData['entities']['urls'])])
```

```
jsonData['created at'], jsonData['user']['favourites count'],
jsonData['user']['statuses_count'],
                                     retweeted_text,
                                     location, len(jsonData['entitles']|'hashtags']),
                                     len(jsonData['entities']['user_mentions']), len(jsonData['entities']['symbols']),
                                     len(jsonData['entities']['urls'])])
x = 0
Downloading max 100000000 tweets
max_id = -1
 with open(fName, 'w') as f:
    for i im range(0, len(searchQuery));
         print("Downloading hastag" + searchQuery[i])
         while tweetCount < maxTweets:
             try:
                 Af [max_id <= 0);
                     if (not sinceId):
                         new_tweets = api_search(q-searchQuery[i], count-tweetsPerQry,lang="en",tweet_mode="extended")
                         new_tweets = api.search(q-searchQuery[i], count=tweetsPerQry,lang="en",tweet_mode="extended",
                                                   since='2018-02-08', until='2019-02-25')
                 elset
                     if (not sinceld):
                         new_tweets = api.search(q=searchQuery[i], count=tweetsPerQry,lang="en",tweet_mode="extended",
                                                   max id=str(max id - 1))
                         new_tweets = api.search(q-searchQuery(1], count-tweetsPerQry,lang="en",tweet_mode='extended',
                                                   max id-str(max id - 1),
                                                   since id-sinceId)
                    print("Clean Full text " + clean_text + "
                                                                           " + tweet full_text + str(x))
                     result enties = any[[re.search(w, tweet.full text.lower()) for w in search countries])
                     result cong = any([re.search(w, tweet.full_text.lower()) for w in search_congress])
                     result bjp = any([re.search(w, tweet.full text.lower()) for w in search bjp])
                     result_both = sll([re.search(w, tweet.full_text.lower()) for w in search_both])
result_anti = sll([re.search(w, tweet.full_text.lower()) for w in search_anti])
                     if(result_onties == False):
                         tweetHash = (hashlib.md5(tweet.full_text.encode('utf-B'))).hexdigest()
                         jsonData = json.loads(jsonpickle.encode(tweet._json, unpicklable=False))
                         if (tweetHash not in retweet_dict.keys()):
                             f.write(jsonpickle.encode(tweet._json, unpicklable=False) =
                             clean_retweet_text = ''
                             if ('retweeted_status' in jsonData):
                                  retweeted text = jsonData['retweeted status']['full text']
                                 clean_retweet_text = p.clean(retweeted_text)
                             writeToCSVResults(jsonData, result_both, result_anti,
                                                result_cong, result_bjp, clean_text, clean_retwest_text)
                             retweet_digt[tweetEash] = tweet.retweet_dount
                             tweetCount += len(new_tweets)
print("tweet count" + str(tweetCount))
                 print("Downloaded (0) tweets", format(tweetCount))
                 max_id = new_tweets[-1].id
             except tweepy. TweepError as e:
                 # Just exit if any error
                 print("some error : " + str(e))
print ("Downloaded (0) tweets, Saved to (1)".format(tweetCount, fName))
```

elser

csvWriterNeutral.writerow[[]sonData['id_str'], clean_text,

OUTPUT

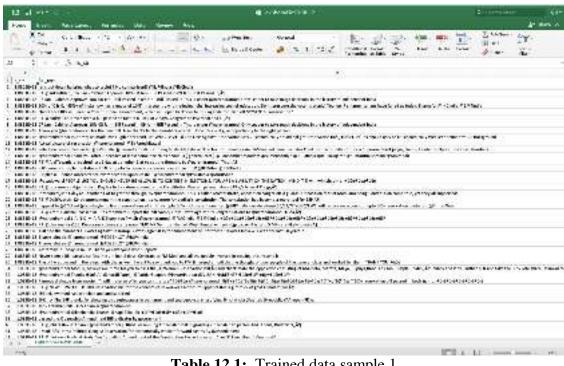


Table 12.1: Trained data sample 1

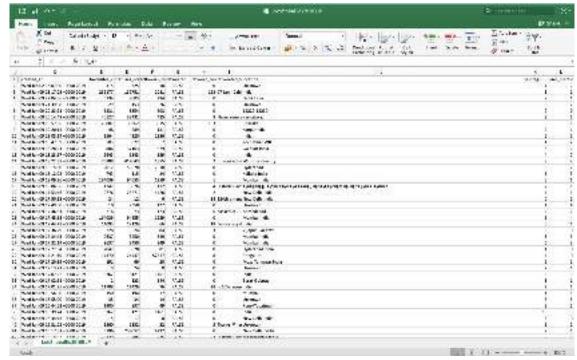
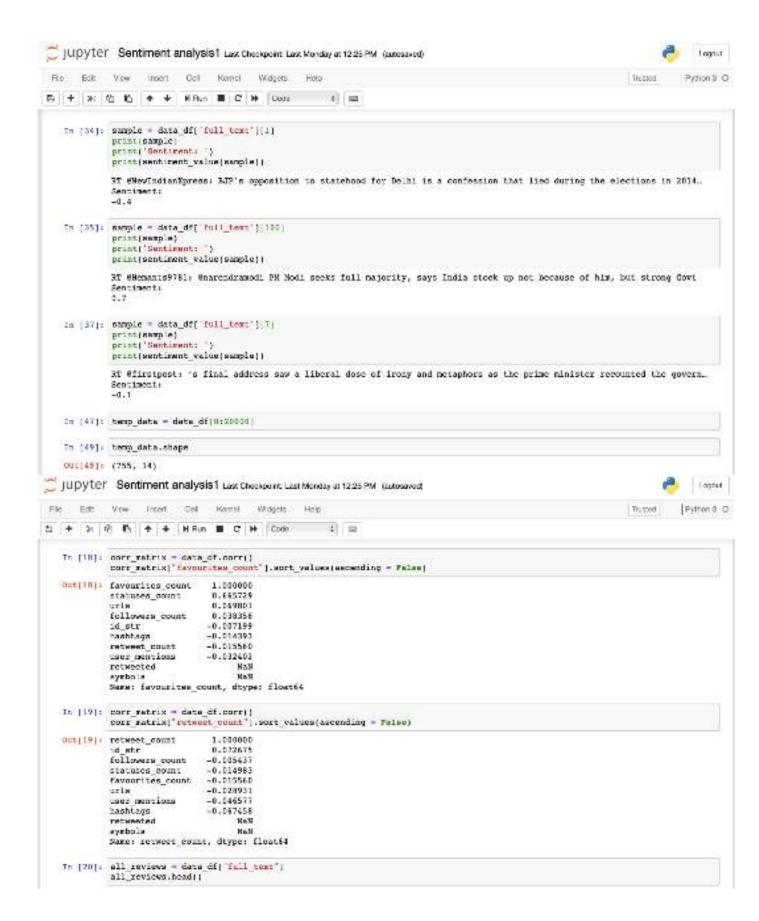
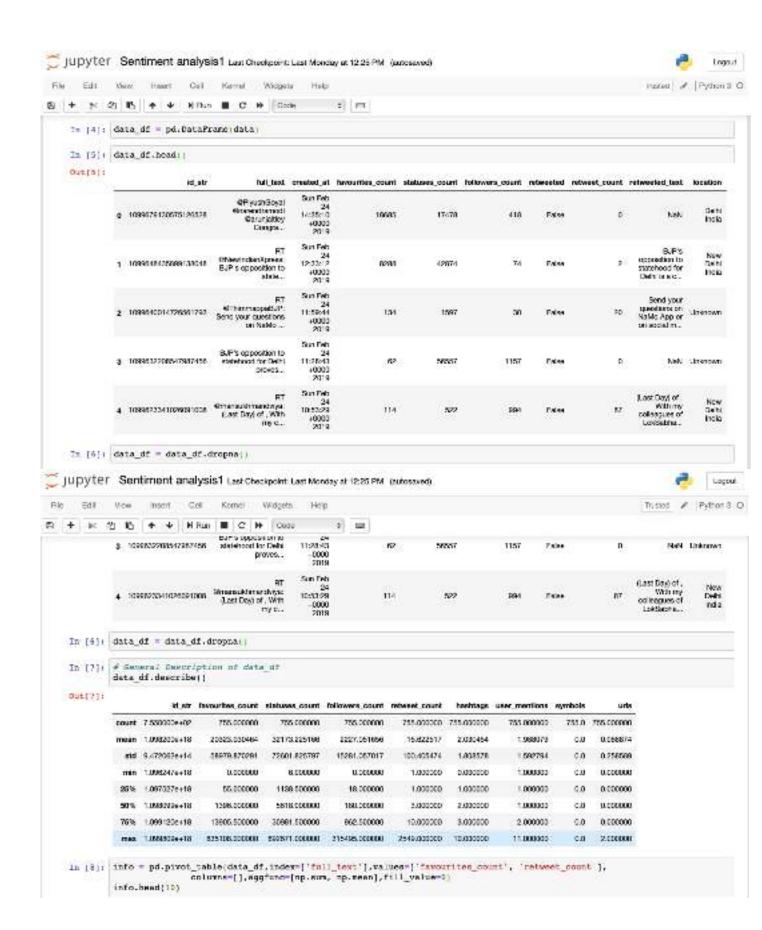
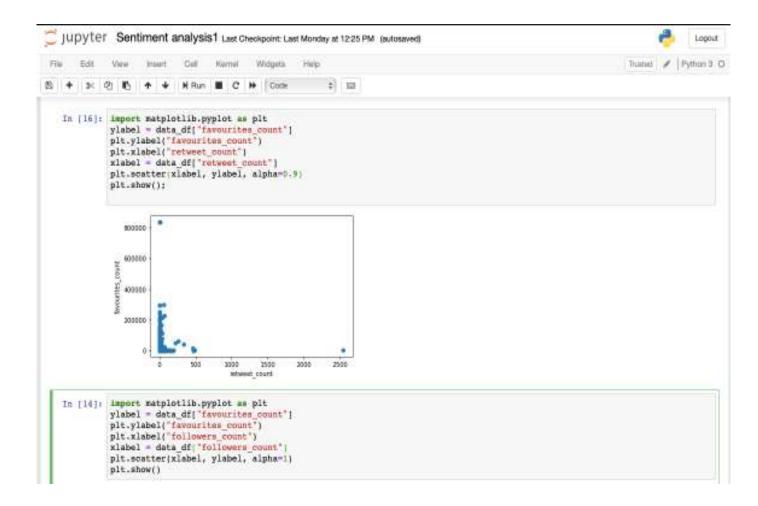


Table 12.2: Trained data sample 2







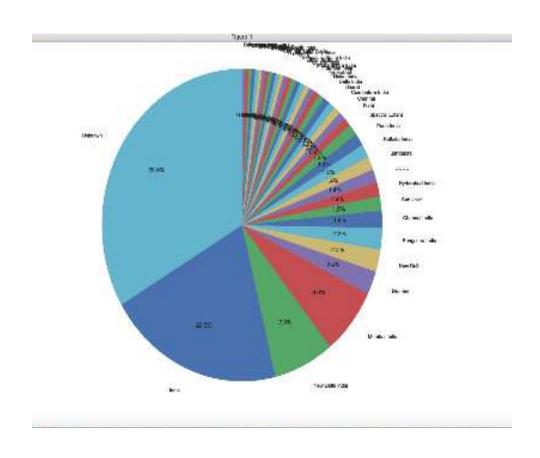
APPLICATION OF MACHINE LEARNING TO PRESENT SENTIMENT PLOTS OF THE LIVE STREAMING DATA

BJP MOOD ANALYSIS

```
In [40]: from pprint import pprint
       import os
       import pandas as pd
       import matplotlib
       import numpy as np
       import hashlib
       from wordcloud import WordCloud
       matplotlib.use('TkAgg')
       import matplotlib.pyplot as mplt
       import seaborn as sns
       sns.set(style="darkgrid")
       sns.set(font scale=1.3)
In (41): import inspect
       fileDir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
       filePath = "/Users/ritika/Downloads/publicsentiments/"
In [46]: plot path = '/Users/ritika/Downloads/train/sentiments/'
       word disb path = '/Users/ritika/Downloads/train//wordstats/1-gram/'
In [47]: uni_gram_files = ['LokShobaElc2019BJP-freqdist-uni.csv', 'LokShobaElc2019Cong-freqdist-uni.csv',
                      'LokShobaElc2019Both-freqdist-uni.csv', 'LokShobaElc2019Neutral-freqdist-uni.csv']
```

```
plot path train = '/Users/ritika/Downloads//train/sentiments/train-dataset/'
         plot_path_test = '/Users/ritika/Downloads//train/sentiments/test-dataset/'
In [48]: full statspath = '/Osers/ritika/Downloads/train/raw/'
         files = os.listdir(plot path)
         state files = os.listdir(full statepath)
In [49]: files = ['.DS_Store', 'LokShobaBle2019BJP-moods.csv', 'LokShobaBle2019Cong-moods.csv',
                  'LokShobaElc2019Both-moods.csv', LokShobaElc2019Neutral-moods.csv']
         labels = ['BJP', 'Congress', 'BJP-Congress', 'Neutral']
In [*]: for i in range(len(stats_files)):
             fname = files[i+1]
             print(fname)
             if(fname.startswith('.') == False and fname.endswith('.csv') == True):
                 list full data = []
                 df_raw = pd.read_csv(full_statepath + state_files[i]).dropna()
                 sns.set(font scale=0.8)
                 df BJP = pd.read csv(plot path + files[i+1])
                 df Cong = pd.read csv(plot path + files[i+2])
                 df_BJP_Cong = pd.read_csv(plot_path + files[i+3])
                 fields = ['tweet', 'mood']
                  location df = df BJP['location'].value counts()
                 filter_loc = location_df[location_df > 35]
         for i in range(len(stats_files));
            fname = files[i+1]
            print(fname)
             if(fname.startswith('.') -- False and fname.endswith('.cev') -- True):
                 list full data = []
                df raw = pd.read csv(full statspath + stats files[i]).dropna()
                 sns.set(font scale=0.6)
                 df_BJP = pd.read_csv(plot_path + files[i=1])
                 df Cong = pd.read csv(plot path + files[i+2])
                df BJF Cong = pd.read_csv(plot_path + files[i+3])
fields = ['tweet', 'mood']
                 location df = df BJP[ 'location'].value_counts()
                filter_loc = location_df[location_df > 35]
                 location_df = df_BJP[ location ].value_counts()
                 filter loc = location df[location df > 35]
                 patches, texts, autotexts = mplt.pie(
                     filter loc,
                     labels-filter loc.index.values,
                     shadow-False,
                     startangle=30,
                     pctdistance=0.7, labeldistance=1.15,
                      with the percent listed as a fraction
                     autopet='$1.1f$$',
                mplt.axis("equal")
mplt.tight_layout()
                 mplt.show();
```

LokShobaElc2019BJP-moods.csv



Graph 12.1: OUTPUT FOR BJP GEOGRAPHIC MAPPING

APPLICATION OF LOGISTIC REGRESSION AND MULTINOMIAL NAIVE BAYES

This included cleaning the content information, evacuating stop words and stemming. To deduce the tweets' feeling I utilized two classifiers: calculated regression and multinomial naive Bayes. I tuned the hyperparameters of the two classifiers with network search.

There are three class names that would be included in this section: negative, impartial or positive.

Code:

```
In [1]: import numpy as no
        import pandas as pd
        pd.set option('display.max colwidth', -1)
        from time import time
        import re
        import string
        import os
        import emoji
        from pprint import pprint
        import collections
In [2]: import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set(style="darkgrid")
        sns.set(font_scale=1.3)
        from sklearn.base import BaseEstimator, TransformerMixin
        from sklearn.feature extraction.text import CountVectorizer
        from sklearn.feature extraction.text import TfidfVectorizer
        from sklearn.model_selection import GridSearchCV
        from sklearn.model selection import train test split
        from sklearn.pipeline import Pipeline, FeatureUnion
        from sklearn.metrics import classification report
        from sklearn.naive bayes import MultinomialNB
        from sklearn.linear model import LogisticRegression
        from sklearn.externals import joblib
In [3]: import gensim
        from nltk.corpus import stopwords
        from nltk.stem import PorterStemmer
        from nltk.tokenize import word tokenize
        import warnings
        warnings.filterwarnings('ignore')
        np.random.seed(37)
```

```
In [5]: df = pd.read_csv('/Esers/ritika/Downloads/train/sentiments/LoxShobaRlc2019BJP-moods.csv')
df = df.reindex(np.random.permutation(df.index))

In [6]: df = df{['twest', 'mood']}

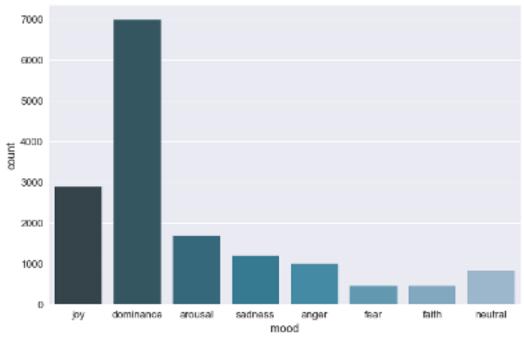
In [7]: df

Out[7]:

tweet mood
```

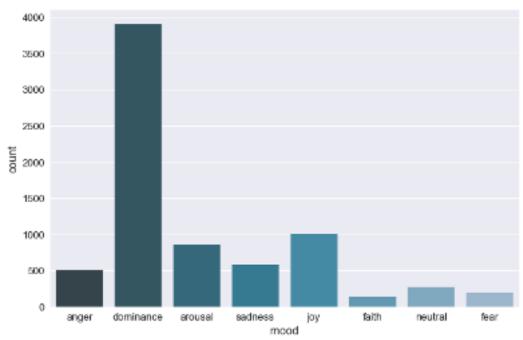
mood	TWEST	
joy	complete report card ji preserned fama fortunate pm point point surgical strike masterstroke	2033
cominance	tweet actually makes sense india retweet tweet shares increase tolds	11936
jey	president anudes confidence together win seats	45
cominance	vs isnt case versus heed intelligence power situation	8900
arousal	Whata dareness congratulate	10481
cominance	hopo modi remain year	3220
dominance	historic descision modi govt 🚣 economically upper class approved union	6668
arousal	indian news channels undergoing mental restlessness laxity	10968
cominance	fcols voted enjoying innocent people suffering time	10131
Joy	amit shah announcing alliance tomorrow seat sharing may confirmed	704
sadness	talking domestic helps unskilled workers persons lower levels pyramid importance mod imust retained pm seats rip	858
arousal	don't hesitate don't looted assets money foreign countries family lose gem loss us gem	9605
commance	address rally fown part campaign hold rallies ahead elections	12915
cominance	mod soon adress last time election	6235
000		4.22

RESULT FOR BJP



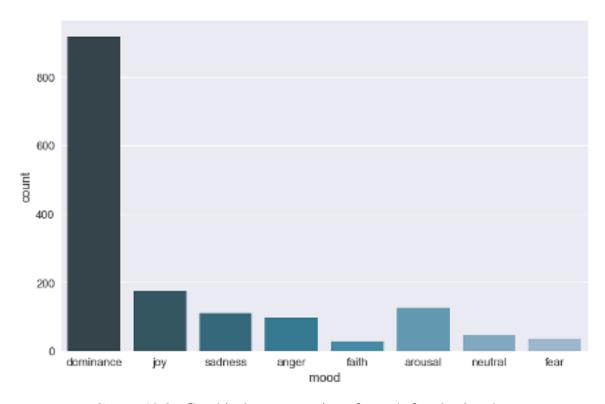
Graph 12.6: Graphical representation of moods for BJP

RESULT FOR CONGRESS



Graph 12.7: Graphical representation of moods for Congress

RESULT FOR BOTH PARTIES COMBINED



Graph 12.8: Graphical representation of moods for election data

PREDICTIVE ANALYTICS

The impulse to see Predictive Analytics as the magnet to draw voters can be very strong, given how various parties profit by it. Companies like Amazon utilize Big Data, information mining and AI to foresee what the client would purchase straightaway, and keep the stock inside delivery areas fully expecting the potential purchase. It can help basic leadership, expanding income and even procedure or item advancement.

Be that as it may, Big Data is anything but an enchantment issue solver for everything. For an organization to utilize analytics to foresee and envision patterns, must approach data in huge scale. This can be influenced by human conduct can be effectively influenced by the climate or by connections. A model that worked in the past may not work again on account of progress in human conduct. An intensive understanding, refined instruments and backing from upper dimension the executives is critical to the accomplishment of any system that chooses to utilize innovation for Big Data Analytics.

THE FUTURE OF DATA ANALYTICS IN ELECTIONS

The battle to get voters through innovation has the upside of two crucial patterns - ascent of the youthful populace and the advances in innovation. In India alone, over a 100 million new voters were added to the blend in 2014. A sizeable segment of this populace will connect with the web by and large and web based life intensely, making information that will be amazingly helpful for information examiners.

The youthful India is tied in with being urban, taught and hopeful and is equipped with the most recent advanced cells and rapid Internet network. This will prompt a monstrous information burst. It's solitary a matter of changing over such information into valuable and canny data to change the course of any business, or for this situation, constituent results.

Another sunrise has happened upon the manner in which races are battled. Amid the 2014 Indian races, the consumption on promoting efforts shot from the 2009 figure of \$83 million to \$300 million, with advanced showcasing being one reason. Experienced legislators who utilized their guts and senses to decide, will presently move towards innovation to settle on actuality based choices. Instructed specialists, software engineers and information researchers will enter constituent scenes, and gainfully in this way, what with the necessity for gifted experts talented in information examination!

Utilizing predictive analytics isn't just about exploiting to win the constituent fights. It's more than that. It's tied in with centering political endeavours to plan and manufacture their methodologies dependent on genuine open opinions. Legislators can now truly be a piece of individuals' lives each day. Advances in innovation can deliver the issues that truly matter to the general population. Along these lines Big Data and prescient examination can take races past political crusades to bring genuine change and win-win circumstances for entire countries.

PREDICTING SENTIMENT WITH TEXT FEATURES

DATA LOADING

The reindexing method is applied to get a permutation of the original values

```
In [65]: df = pd.read_csv('/Users/ritika/Downloads/train/septiments/LokShobaElc2019BJP-moods.csv')
df = df.reindex(np.random.permutation(df.index))
In [67]: df = df[['tweet', 'mood']]
```

• ANALYSIS OF THE TEXTS IN THE DATA TO BE USED

To break down the content variable we make a class TextCounts. In this class we figure some fundamental measurements on the content variable. This class can be utilized later in a Pipeline, also.

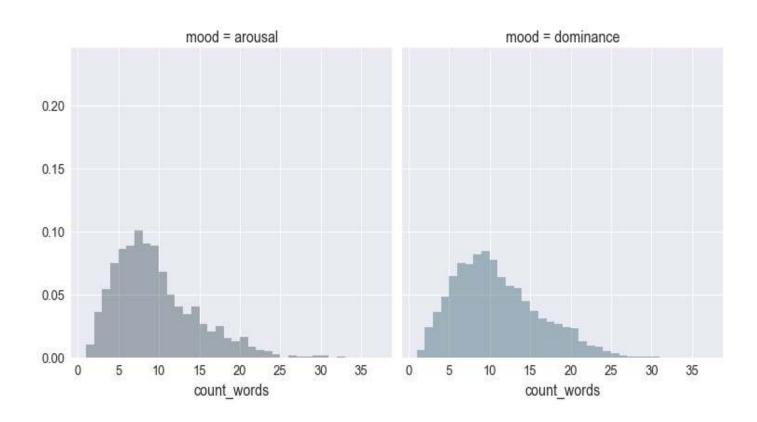
- 1. **count_words**: number of words in the tweet
- 2. **count_mentions**: referrals to other Twitter accounts, which are preceded by a @
- 3. **count_hashtags**: number of tag words, preceded by a #
- 4. **count_capital_words**: number of uppercase words, could be used to "*shout*" and express (negative) emotions
- 5. **count_excl_quest_marks** : number of question or exclamation marks
- 6. **count_urls**: number of links in the tweet, preceded by http(s)
- 7. **count_emojis**: number of emoji, which might be a good indication of the sentiment

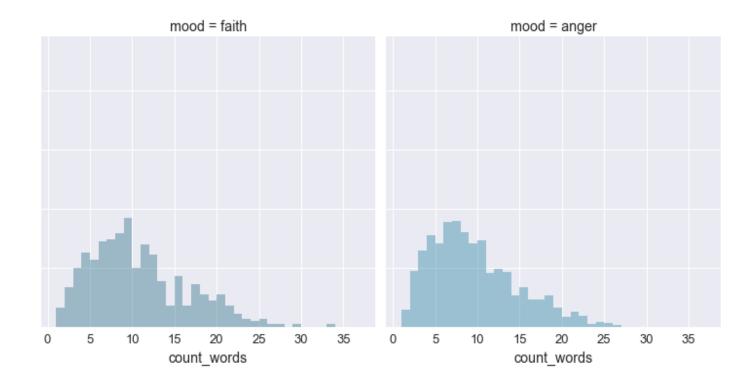
```
In [77]: class TextCounts(BaseEstimator, TransformerMixin):
             def count regex(self, pattern, tweet):
                 return len(re.findall(pattern, tweet))
             def fit(self, X, y=Wone, **fit_params):
                 return self
             def transform(self, X, **transform params):
                 count_words = X.apply(lambda x: self.count_regex(r'\w+', x))
                 count mentions = X.apply(lambda x: self.count_regex(r'#\w+', x))
                 count_hashtags = X.apply(lambda x: self.count_regex(r'#\w+', x))
                 count capital words = X.apply(lambda x: self.count regex(r'\b(A-X)(2,)\b', x))
                 count_excl_quest_marks = X.apply(lambds x: self.count_regex(r'1|\7', x))
                 count_urls = X.apply(lambde x: self.count_regex(r'http.?://['\s]+[\s]?', x))
                 count emojis = X.apply(lambda x: emoji.demojize(x)).apply(lambda x: self.count regex(r':[a-z 5]+:', x))
                 df = pd.DataFrame({'count_words'; count_words
                                   , 'count mentions': count mentions
                                     'count_hashtags'; count_hashtags
                                    , 'count capital words': count capital words
                                     'count excl quest marks'; count excl quest marks
                                     'count urls': count urls
                                     'count_emojis'; count_emojis
                                  31
                 return df
In [78]: print(df)
         14705 dominance
         176
               joy
         11454 anger
In [791: to = TextCounts()
         df_eda = tc.fit_transform(df.tweet)
         df_eds['mood'] = df.mood
In [82]: def show_dist(df, col):
             print('Descriptive stats for ()'.format(col))
             print('-'*(len(col)+22))
             print(df.groupby('mood')[col].describe())
             bins = np-arange(df[col].min(), df[col].max() + 1)
             g = ans.PacetGrid(df, col='mood', size=5, hue='mood', palette="PuBaCn_d")
             g = g.map(sns.distplot, col, kde-False, norm hist-True, bins-bins)
             plt.ahow();
In [83]; show dist(df eda, 'count words')
         Descriptive stats for count words
                                          std min 25% 50%
                                                               75% max
         pood.
                    999.0 9.063063 5.109525 1.0 5.0 8.0
         anger
                                                               12.0 26.0
                    1677.0 9.011926
                                     4.966340 1.0 5.0 8.0
                                                               12.0 32.0
         arousal
                   6969.0 10.412972 5.208228 1.0 6.0 10.0
         dominance
                                                               14.0
                                                                    30.0
                    445.0 10.215730 5.744031 1.0 6.0 9.0
                                                                13.0 33.0
         faith
         fear
                    453.0
                           8.070640
                                     4.866751 1.0 5.0 7.0
                                                                10.0 26.0
                    2876.0 9.202364
                                      5.446474 1.0 5.0 8.0
                                                                13.0 37.0
         toy
                                      2.717959 1.0 2.0 3.0
                    827.0 3.603386
         nembral:
                                                                5.0 24.0
         sadness
                    1196.0 9.448161
                                     5.014605 1.0 4.0 9.0
                                                              12.0 27.0
```

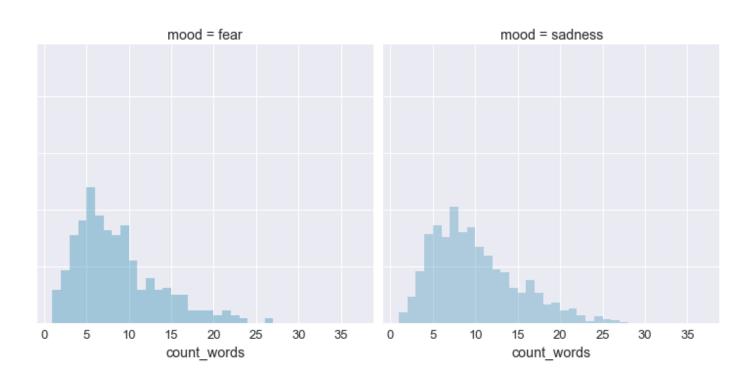
<u>Output</u>

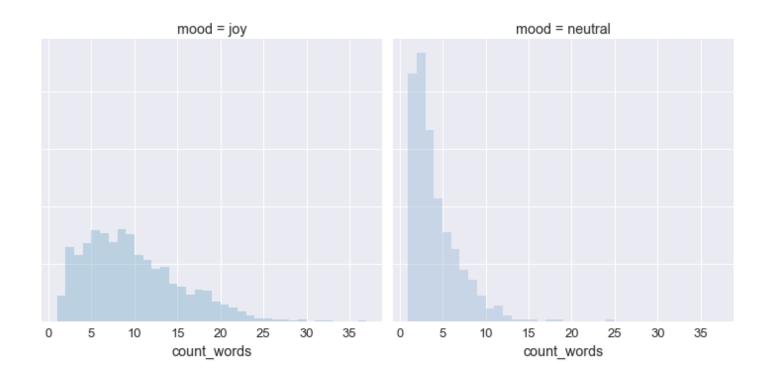
Descriptive stats for count_words

	count	mean	std	min	25%	50%	75%	max
mood		-						
anger	999.0	9.063063	5.109525	1.0	5.0	8.0	12.0	26.0
arousal	1677.0	9.011926	4.966340	1.0	5.0	8.0	12.0	32.0
dominance	6969.0	10.412972	5.208228	1.0	6.0	10.0	14.0	30.0
faith	445.0	10.215730	5.744031	1.0	6.0	9.0	13.0	33.0
fear	453.0	8.070640	4.866751	1.0	5.0	7.0	10.0	26.0
joy	2876.0	9.202364	5.446474	1.0	5.0	8.0	13.0	37.0
neutral	827.0	3.603386	2.717959	1.0	2.0	3.0	5.0	24.0
sadness	1196.0	9.448161	5.014605	1.0	6.0	9.0	12.0	27.0









In [84]: show dist(df eda, 'count mentions') Descriptive stats for count mentions std min mean 25% 50% 75% count max mood 999.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 anger arousal 1677.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 dominance 6969.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 faith 445.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 fear 453.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 joy 2876.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 neutral 827.0 0.0 0.0 0.0 0.0 0.0 sadness 1196.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In [85]: show_dist(df_eda, 'count_hashtags')

Descriptive stats for count_hashtags std min 25% count mean 50% 75% max mood 0.0 0.0 0.0 0.0 0.0 999.0 0.0 0.0 anger 1677.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 arousal dominance 6969.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 faith 445.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 fear 453.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2876.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 joy 827.0 0.0 0.0 0.0 0.0 neutral 0.0 0.0 0.0 sadness 1196.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In [86]: show_dist(df_eda, 'count_capital_words')

	count	mean	std	min	25%	50%	75%	max
mood	counc	mouri	bcu		250	500	150	mar
anger	999.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0
arousal	1677.0	0.001193	0.034524	0.0	0.0	0.0	0.0	1.0
dominance	6969.0	0.001004	0.031679	0.0	0.0	0.0	0.0	1.0
faith	445.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0
fear	453.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0
joy	2876.0	0.000695	0.026366	0.0	0.0	0.0	0.0	1.0
neutral	827.0	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0
sadness	1196.0	0.000836	0.028916	0.0	0.0	0.0	0.0	1.0

In [87]: show_dist(df_eda, 'count_excl_quest_marks')

Descriptive stats for count_excl_quest_marks

	count	mean	std	min	25%	50%	75%	max
mood								
anger	999.0	0.003003	0.054745	0.0	0.0	0.0	0.0	1.0
arousal	1677.0	0.010137	0.139953	0.0	0.0	0.0	0.0	4.0
dominance	6969.0	0.004161	0.074697	0.0	0.0	0.0	0.0	2.0
faith	445.0	0.011236	0.141929	0.0	0.0	0.0	0.0	2.0
fear	453.0	0.013245	0.148149	0.0	0.0	0.0	0.0	2.0
joy	2876.0	0.002782	0.058911	0.0	0.0	0.0	0.0	2.0
neutral	827.0	0.002418	0.049147	0.0	0.0	0.0	0.0	1.0
sadness	1196.0	0.000836	0.028916	0.0	0.0	0.0	0.0	1.0

In [88]: show_dist(df_eda, 'count_urls')

Descriptive stats for count_urls

sadness

std min 25% 50% 75% count mean max mood anger 0.0 0.0 0.0 0.0 0.0 999.0 0.0 0.0 1677.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 arousal dominance 6969.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 faith 445.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 fear 453.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2876.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 joy neutral 827.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

1196.0 0.0

In [89]: show dist(df eda, 'count emojis') Descriptive stats for count emojis min 25% 50% 75% std count mean max mood 0.239663 anger 999.0 0.026026 0.0 0.0 0.0 0.0 5.0 1677.0 0.020274 0.184919 0.0 0.0 3.0 arousal 0.0 0.0

0.178352

0.247837

0.361081

0.278875

0.696820

0.237552

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

4.0

3.0

5.0

5.0

5.0

18.0

CONCLUSION FROM THIS STAGE:

dominance

faith

sadness

fear

joy neutral 6969.0

445.0

453.0

827.0

1196.0

2876.0

The quantity of words utilized in the tweets is rater low. Greatest number of words is 37 and there are even tweets with just 1 word. So, we'll must be cautious amid information cleaning not to evacuate such a large number of words. Then again, the content handling will be quicker. Negative tweets contain a bigger number of words than impartial or positive tweets.

0.018367

0.040449

0.048565

0.034423

0.068924

0.021739

All tweets have in any event one notice. Most likely this is the consequence of separating the tweets dependent on notices in the Twitter information. There is by all accounts no distinction in number of notices as to the opinion.

The majority of the tweets don't contain hash labels. So likely this variable won't be held amid model preparing. Once more, no distinction in number of hash labels as to the conclusion. A large portion of the tweets don't contain uppercase words and we don't see a distinction in appropriation between the feelings. The positive tweets appear to utilize more outcry or question marks.

Most tweets don't contain a URL.

Most tweets don't utilize emoticons.

• TEXT CLEANING

Before we begin utilizing the tweets' content we clean it. We'll do the this in the class CleanText:

- 1. evacuate the mention, as we need to make the model generalisable to tweets of other parties for candidature as well.
- 2. expel the hash label sign (#) yet not the genuine tag as this may contain data
- 3. set all words to lowercase
- 4. evacuate all accentuations, including the inquiry and shout marks
- 5. evacuate the URLs as they don't contain valuable data and we didn't see a qualification in the quantity of URLs utilized between the assessment classes
- 6. ensure the changed over emoticons are kept as single word.
- 7. expel digits
- 8. expel stop words
- 9. apply the PorterStemmer to keep the stem of the words

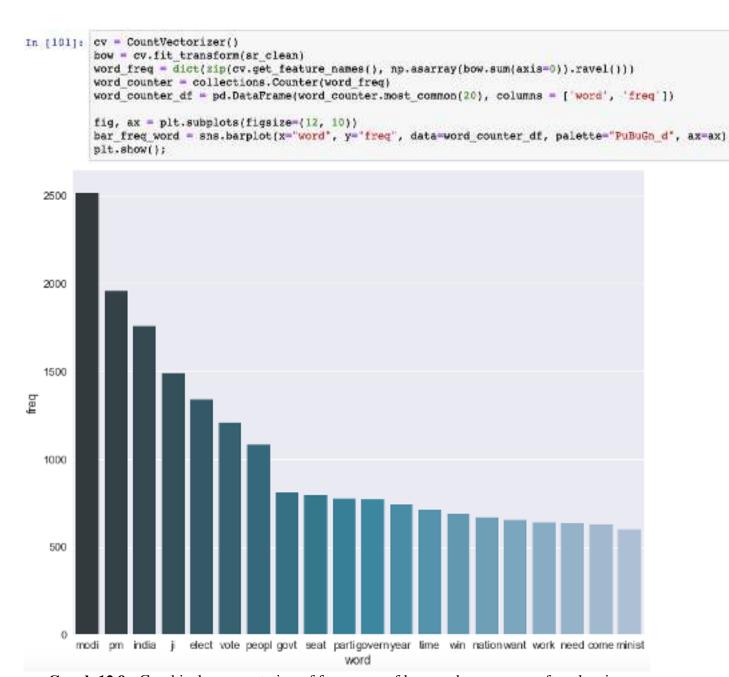
```
In [94]: class CleanText(BaseEstimator, TransformerMixin)(
               def remove mentions(self, input_text):
                   return re.sub(r'8\v+', '', input text)
               def remove urls(self, input text):
                   return re.sub(r'http:?://[^\s]+[\s]?', '', input_text)
               def emoji_oneword(self, input_text);
                   return input_text.replace('_',
               def remove punctuation(ealf, input text):
                   punct = string.punctuation
trantab = str.maketrans(punct, len(punct)*' ')
                   return input_text.translate(trantab)
               def remove_digits(self, input_text):
                   return re.sub('\d+', '', Input text)
              def to_lower(self, input_text):
    return input_text.lower()
               def remove_stopwords(self, input_text);
                   stopwords list = stopwords.words('english')
                   whitelist = ['n't', "not', "no"]
words = input_text.split()
                   clean words = [word for word in words if [word not in stopwords_list or word in whitelist] and len(word) > 1] return " ".join(clean words)
               def stenning(self, input text):
                   porter = PorterStemmer()
words = input text.split()
                   stenned words = [porter.sten(word) for word in words]
                             ".join(stemmed words)
                   return
               def fit(self, X, y-Mone, **fit params):
                   return self.
               def transform(self, X, "*transform params):
                   clean X = X.apply(self.remove mentions).apply(self.remove urls).apply(self.emoji oneword).apply(self.remove pu
          nctuation).apply(self.remove_digits).apply(self.to_lower).apply(self.remove_stopwords).apply(self.stemming)
                   return clean I
  In [98]: import nitk
            nltk.download; 'stopwords' )
            from altk.corpus import stopwords
            stopwords.words('english')
            [nltk_data] Downloading package stopwords to
[nltk_data] /Users/ritika/nltk_data...
            [mitk_date]
            [mitk_date] Unsuppling compons/stopwords.xip.
 Cotiati: [.17
              'my' .
              'myself',
              we.
              ours'
              ourselves',
              you'.
              you'ze",
              'you've',
              'you'11'.
              you'd'.
              your',
               yours'
  in [99]: ct - Cleartext[]
            sr clear = ct.fit transform(df.tweet)
            ar clean.sample(5)
  Out (99): 5740
                      get clearanc lesson applaud support esp hon word learn oth
            13626
                      lie wont work
            12952
                      wait.
                      take holi dip
            317
            58 agre share on post alliane shiw sema minist
Manner tweet, dtypes object
```

One negative impact of content cleaning is that a few lines don't have any words left in their content. For the CountTheVectorizer and TfIdfUniqueVectorizer this does not so much represent an issue. Be that as it may, for the Word2Vec calculation this causes a mistake. There are various procedures that you could apply to manage these missing qualities.

- 1. Evacuate the total line, however in a generation situation this isn't generally alluring.
- 2. Ascribe the missing an incentive with some placeholder content like [no text]
- 3. Word2Vec: utilize the normal all things considered
- 4. Here we will ascribe with a placeholder content.

```
In [100]: empty_clean = sr_clean == "'
    print('() records have no words left after text cleaning'.format[sr_clean[empty_clean].count()))
    sr_clean.loc[empty_clean] = '[no_text]'
    3 records have no words left after text cleaning
```

• FINDING THE FREQUENCY OF WORDS UPON DATA CLEANING



Graph 12.9: Graphical representation of frequency of keyword occurrence after cleaning

• CREATING TEST DATA

To assess the prepared models, it is required a test set. Assessing on the train information would not be right on the grounds that the models are prepared to limit their cost capacity.

Firs it is necessary to consolidate the TextCounts factors with the CleanText variable.

NOTE: Initially, I committed the error to do execute TextCounts and CleanText in the GridSearchCV underneath. This took excessively long as it applies these capacities each keep running of the GridSearch. It gets the job done to run them just once.

```
In [102]: df model = df eda
          df model['clean text'] = sr clean
          df model.columns.tolist()
Out[102]: ['count_words',
           'count mentions',
           'count hashtags',
           'count capital words',
           'count excl quest marks',
           'count urls',
           'count emojis',
           'mood',
           'clean text']
In [103]: class ColumnExtractor(TransformerMixin, BaseEstimator):
              def init (self, cols):
                  self.cols = cols
              def transform(self, X, **transform params):
                  return X[self.cols]
              def fit(self, X, y=None, **fit params):
                  return self
```

So df_model now contains a few factors. Be that as it may, our vectorizers will just need the clean_text variable. The TextCounts factors can be included all things considered. To explicitly choose sections, I composed the class ColumnExtractor underneath. This can be utilized in the Pipeline subsequently.

HYPERPARAMETER TUNING AND CROSS-VALIDATION

The vectorizers and classifiers all have configurable parameters. So as to picked the best parameters, we have to assess on a different approval set that was not utilized amid the preparation. Nonetheless, utilizing just a single approval set may not deliver solid approval results. Because of chance you may have a decent model presentation on the approval set. In the event that you would part the information else, you may finish up with different outcomes. To get a progressively precise estimation, we perform cross-approval.

With cross-approval the information is part into a train and approval set on numerous occasions. The assessment metric is then arrived at the midpoint of over the various folds. Fortunately, GridSearchCV applies cross-approval out-of-the-crate.

To locate the best parameters for both a vectorizer and classifier, we make a Pipeline. This is put into a capacity for usability. As a matter of course GridSearchCV utilizes the default scorer to figure the best score. For both the MultiNomialNb and LogisticRegression this default scoring metric is the exactness.

In our capacity grid_vect we moreover create the classification_report on the test information. This gives some fascinating measurements per target class, which may be increasingly suitable here. These measurements are the accuracy, recal and F1 score.

Accuracy: Of all columns we anticipated to be a sure class, what number of did we accurately foresee?

Review: Of all lines of a specific class, what number of did we effectively anticipate?

F1 score: Harmonic mean of Precision and Recall

```
In [105]: def grid vect(clf, parameters clf, X train, X test, parameters text=None, vect=None, is w2v=False):
              textcountscols = ['count capital words', 'count empjis', 'count excl quest marks', 'count hashtags'
                                , count mentions', count urls', count words']
              if is wave
                  wZvcols = []
                  for i in range(SINE):
                      w2vcols.append(1)
                  features = FeatureUnion([('textcounts', ColumnExtractor(cols=textcountscols))
                                           , ('w2v', ColumnExtractor(cols=w2veols)))
                                           , n_jobs=-1)
              elser
                  features = FeatureUnion([['textcounts', ColumnExtractor(cols-textcountscols))
                                           , ('pipe', Pipeline()('cleantext', ColumnExtractor(cols='clean text')), ('vect', vect
          111)1
                                           , n_jobs=-1)
              pipeline = Pipeline([
                  ['features', features)
                  , ('clf', clf)
              11
              # Join the parameters dictionaries together
              parameters = dict()
              if parameters_text:
                  parameters.update(parameters text)
              parameters.update(parameters_clf)
              # Make sure you have scikit-learn version 0.19 or higher to use multiple scoring metrics
              grid_search = GridSearchCV(pipeline, parameters, n_jobs--1, verbose-1, cv=5)
              print("Performing grid search ... ")
              print('pipeline:', [name for name, _ in pipeline.steps])
              print('parameters:")
              pprint(parameters)
              t0 = time()
              grid search-fit(X train, y train)
              print('done in 40.3fs" % (time() - t0))
              print()
              print("Best CV score: 10.3f" \ grid search.best score )
              print("Best parameters set;")
              best parameters = grid_search.best_estimator_.get_params()
              for param name in sorted(parameters.keys()):
                  print("\tis: tr' i (param name, best parameters(param name)))
```

```
print("Performing grid search...")
print("pipeline:", [name for name, _ im pipeline.steps])
print("parameters:")
pprint(parameters)
t0 = time()
grid_search.fit(X_train, y_train)
print("done in 40.3fs" 4 (time() - t0))
print()
print("Best CV score: 10.3f" % grid_search.best_score_)
print("Best parameters set;")
best_parameters = grid_search.best_estimator_.get_params()
for param name in sorted(parameters.keys());
    print("\tis: ir" i (param name, best parameters[param name]))
print("Test score with best estimator : 10.3f" % grid search.best estimator .score(X test, y test))
print("\m')
print("Classification Report Test Data")
print(classification_report(y_test, grid_search.best_estimator_.predict(X_test)))
return grid search
```

```
In [106]: parameters_vect = {
        'features pipe vect max df': (0.25, 0.5, 0.75),
        'features pipe vect ogram_range : ((1, 1), (1, 2)),
        'features pipe vect min_df': (1, 2)
}

# Parameter prid settings for MulninoxialME
parameters_mnb = {
        'elf_alpha': (0.25, 0.5, 0.75)
}

# Parameter grid settings for LogisticRegression
parameters_logreg = {
        'elf_C': (0.25, 0.5, 1.0),
        'olt_penalty': ('11', '12')
}
```

• CLASSIFIERS

This is in order to derive a comparison of performance of a MultiNomial NB and Logistic Regression.

COUNT VECTORIZER

To utilize words in a classifier, we have to change over the words to numbers. This should be possible with a CountVectorizer. Sklearn's CountVectorizer takes all words in all tweets, doles out an ID and tallies the recurrence of the word per tweet. This pack of words would then be able to be utilized as contribution for a classifier. It is what is known as a meager informational index, implying that each record will have a large number for the words not happening in the tweet.

```
In [188]: countwect = CountWectorizer()
In [189]: best_rnb_countwect = grid_vect; mna, parameters_rnb, %_train, %_test, parameters_text-parameters_vect, vect-countwect)
           Performing grid search...
           pipeline: ['features', 'clf']
            parameters
            ('clf_alpha': (0.25, 0.5, 0.75),
             'features pipe veet max df': (0.25, 0.5, 0.75),
             'features pipe vect min_df': (1, 2),
'features pipe vect ngram_range': ((1, 1), (1, 2)))
           Fitting 5 folds for each of 36 candidates, totalling 180 fits
            [Ferallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
           [Parallel(n_jobs=-1)]: Done 42 tasks | clapsed: 20.8s
[Parallel(n_jobs=-1)]: Done 180 out of 180 | clapsed: 1.Jmin finished
            done in 80.113s
            Best CV score: 0.594
            Best parameters sets
                     clf_alpha: 0.5
                     features pipe vect man df: 0.25
features pipe vect min df: 2
features pipe vect pgras_range: (1, 1)
            Test score with best_estimator_: 0.599
           Classification Report Test Data
                                           recall
                           presiston
                                                    fl-score
                                                                 support
                                             0.27
                                                         0.33
                                                                      102
                    anger
                                  0.42
                                 0.55
                 arougal
                                             0.36
                                                         0.44
                                                                      174
                                                                      490
               dominance
                                 0.62
                                             0.84
                                                         0.72
                                 0.78
                                             0.27
                                                                      32
                   faith
                                                         0.39
                    feur
                                 4.59
                                             0.23
                                                         0.33
                                                                      44
                      Soy
                                  0.62
                                             0.54
                                                        0.63
                                                                      289
                 neutral
                                  0.44
                                             0.05
                                                         0.09
                                                                      84
                                                         0.34
                 RAGRESS
                                  0.47
                                             D. 26
                                 6.60
                                             0.60
                                                         0.60
                                                                    1545
               micro avo
               macro avg
                                  9.55
           verighted avg
                                 C.58
                                             0.40
                                                        0.56
                                                                    3545
```

LOGISTIC REGRESSION

```
In [110]: # LogisticRegression
               best_logreg_countvect = grid_vect(logreg, parameters_logreg, X_train, X_test, parameters_text-parameters_vect,
                                                               vect-countyect)
              Performing grid search...
              pipeline: ['features', 'clf']
               parameters:
              ('cif_C': (0.25, 0.5, 1.0),
'cif_penalty': ('l1', 'l2'),
'features_pipe_vect_max_df': (0.25, 0.5, 0.75),
'features_pipe_vect_min_df': (1, 2),
'features_pipe_vect_ngram_range': ((1, 1), (1, 2))}
'Esting 5 folds for each of 72 condicates_totalling 360
              Pitting 5 folds for each of 72 candidates, totalling 360 fits
               [Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
                                                                            elapsed: 31.4s
elapsed: 2.7min
               [Parallel(n_jobs=-1)]: Done 42 tasks
              [Parallel(n_jobs=-1)]: Done 192 tasks | elapsed: 2.7min
[Parallel(n_jobs=-1)]: Done 360 out of 360 | elapsed: 6.5min finished
               done in 389.703s
              Best CV score: 0.725
              Best parameters set:
                          clf__C: 1.0
                          clf_penalty: '12'
                          features_pipe_vect_max_df: 0.25
             features pipe vect min df: 1
features pipe vect ngram range: (1, 1)
Test score with best estimator: 0.733
```

COMPARISON OF MULTINOMIAL NB AND LOGISTIC REGRESSION

MultiNomial NB

Classification	n Report Test	Data		
	precision	recall	fl-score	support
anger	0.42	0.27	0.33	102
arousal	0.55	0.36	0.44	174
dominance	0.62	0.86	0.72	690
faith	0.70	0.27	0.39	52
fear	0.59	0.23	0.33	44
joy	0.62	0.64	0.63	289
neutral	0.44	0.05	0.09	84
sadness	0.47	0.26	0.34	110
micro avg	0.60	0.60	0.60	1545
macro avg	0.55	0.37	0.41	1545
weighted avg	0.58	0.60	0.56	1545

Logistic Regression

Classification	n Report Test	Data		
	precision	recall	fl-score	support
anger	0.65	0.48	0.55	102
arousal	0.71	0.59	0.64	174
dominance	0.77	0.89	0.82	690
faith	0.69	0.38	0.49	52
fear	0.85	0.50	0.63	44
joy	0.68	0.73	0.71	289
neutral	0.77	0.83	0.80	84
sadness	0.65	0.37	0.47	110
micro avg	0.73	0.73	0.73	1545
macro avg	0.72	0.60	0.64	1545
weighted avg	0.73	0.73	0.72	1545

Word2Vec

Another method for changing over the words in the tweets to numerical qualities can be accomplished with Word2Vec. Word2Vec maps each word in a multi-dimensional space. It does this by considering the setting wherein a word shows up in the tweets. Therefore, words that are semantically comparative are additionally near one another in the multi-dimensional space.

The Word2Vec calculation is actualized in the genism bundle.

The Word2Vec calculation utilizes arrangements of words as information. For that reason, we utilize the word_tokenize strategy for the nltk bundle.

The Word2Vec model gives a vocabulary of the words in the corpus together with their vector esteems. The quantity of vector esteems is equivalent to the picked size. These are the measurements on which each word is mapped in the multi-dimensional space.

```
In [112]: nltk.download('punkt')
          SIZE = 25
          X_train['clean_text_wordlist'] = X_train.clean_text.apply(lambda x : word_tokenize(x))
          X_test['clean_text_wordlist'] = X_test.clean_text.apply(lambda x : word_tokenize(x))
          model = gensim.models.Word2Vec(X_train.clean_text_wordlist
                            , min count-1
                            , size=SIZE
                            , window=3
                            , workers=4)
          [nltk data] Downloading package punkt to /Users/ritika/nltk data...
          [nltk data]
                        Unzipping tokenizers/punkt.zip.
In [113]: model.most similar('plane', topn=3)
Out[113]: [('manufactur', 0.9952282309532166),
           ('field', 0.9949126243591309),
           ('latest', 0.9949066042900085))
```

Words with an event not exactly min_count are not kept in the vocabulary.

NOTE: A symptom of the min_count parameter is that a few tweets could have no vector esteems. This is would be the situation when the word(s) in the tweet happen in under min_count tweets. Because of the little corpus of tweets, there is a danger of this incident for our situation. In this manner we set the min_count esteem equivalent to 1.

The tweets can have an alternate number of vectors, contingent upon the quantity of words it contains. To utilize this yield for demonstrating we will total the vectors per tweet to have a similar number (for example estimate) of information factors per tweet. Consequently, we will take the normal of all vectors per tweet. We do this with the capacity compute_avg_w2v_vector. In this capacity we additionally check whether the words in the tweet happen in the vocabulary of the word2vec model. If not, a rundown loaded up with 0.0 is returned. Else the normal of the word vectors.

```
In [117]: best_logreg w2v = grid_vect(logreg, parameters_logreg, X_train_w2v, X_test_w2v, is w2v=True)
          Performing grid search...
          pipeline: ['features', 'clf']
          parameters:
          {'clf C': (0.25, 0.5, 1.0), 'clf penalty': ('11', '12')}
          Pitting 5 folds for each of 6 candidates, totalling 30 fits
          [Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
          [Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 2.8min finished
          done in 219,807s
          Best CV score: 0.468
          Best parameters set:
                 clf C: 1.0
                 clf penalty: '11'
          Test score with best_estimator : 0.460
         Classification Report Test Data
                                    recall fl-score
                                                      support
                       precision
                            0.29
                                    0.02
                                                0.04
                                                          102
                 anger
              arousal
                            0.00
                                     0.00
                                                0.00
                                                          174
             dominance
                            0.47
                                      0.97
                                                0.63
                                                           690
                faith
                           0.00
                                      0.00
                                                0.00
                                                           52
                           0.00
                                      0.00
                                               0.00
                 fear
                                                           44
                           0.30
                                      0.04
                                               0.08
                                                          289
                  joy
              neutral
                           0.44
                                      0.29
                                               0.35
                                                           84
                                      0.00
                                               0.00
              sadness
                            0.00
                                                          110
                            0.46
                                     0.46
                                               0.46
                                                         1545
            micro avg
            macro avg
                            0.19
                                      0.17
                                                0.14
                                                         1545
                                      0.46
          weighted avg
                            0.31
                                                0.32
                                                         1545
```

The two classifiers accomplish the best outcomes when utilizing the highlights of the CountVectorizer By and large, Logistic Regression outflanks the Multinomial Naive Bayes classifier. The best execution on the test set originates from the LogisticRegression with highlights from CountVectorizer.

Best parameters:

C estimation of 1

L2 regularization

max_df: 0.5 or greatest report recurrence of half.

min_df: 1 or the words need to show up in at any rate 2 tweets

ngram range: (1, 2), both single words as bi-grams are utilized

ASSESSMENT MEASUREMENTS:

A test precision of 57.3%, which is superior to anything what we would accomplish by setting the expectation for all perceptions to the greater part class (negative which would give 63% exactness).

The Precision is fairly high for each of the three classes. For example, of all cases that we foresee as negative, 60% is to be sure negative.

The Recall for the unbiased class is low. Of every single impartial case in our test information, we just foresee 58% as being unbiased.

• TESTING OF THE NEW MODEL DEVELOPED

Test for positive tweets

Test for negative tweets

CONCLUSION

The model classifies all of the tweets correctly.

We will delineate motion election data survey into a genuine vector space, a well-known method when working with content called word embedding. This is where words are encoded as genuine esteemed vectors in a high dimensional space, where the similitude between words as far as importance means closeness in the vector space.

Keras gives an advantageous method to change over positive number portrayals of words into a word installing by an Embedding layer.

We will delineate word onto a 32 length genuine esteemed vector. We will likewise restrain the all-out number of words that we are keen on displaying to the 5000 most incessant words, and zero out the rest. At last, the arrangement length (number of words) in each audit shifts, so we will oblige each survey to be 500 words, truncating long surveys and cushion the shorter audits with zero qualities.

Since we have characterized our concern and how the information will be arranged and displayed, we are prepared to build up a LSTM model to group the supposition of motion picture surveys.

Given a chance to feature the principle commitments of this work.

- We endeavoured to arrange the political direction of the Twitter clients from India. Because of the assortment of ideological groups and pioneers and utilization of various dialects, this work turned out to be significantly all the more testing.
- We broke down the political direction of Twitter clients for the 'Ace' class, yet in addition for the 'Counter' classification.

- We demonstrated that the system dependent on retweets and client makes reference to works the best for order in the Indian situation.
- After investigating the information more than 5 months, we demonstrated that the weekdays saw the greatest movement on Twitter identified with legislative issues.
- We demonstrated that BJP and its Prime Ministerial competitor Narendra Modi were the most noteworthy gainers in the fields of notices and ubiquity on Twitter.

USE THE EMBEDDING LAYER OF KERAS TO CREATE WORD EMBEDDINGS FROM THE TRAINING DATA

While applying one-hot encoding to the words in the tweets, we end up with merger vectors of high dimensionality (here it is by increasing the quantity of words). On bigger informational collections this could cause execution issues. Moreover, one-hot encoding does not consider the semantics of the words. For example, plane and flying machine are various words yet have a comparative significance.

Word embeddings lessen these two issues. Word embeddings are thick vectors with a much lower dimensionality. Also, the semantic connections between words are reflected out there and bearing of the vector.

NETWORK BASED CLASSIFICATION

```
In [8]: def deep model(model, X train, y train, X valid, y valid):
            model.compile(optimizer='rmsprop'
                           , loss='categorical_crossentropy'
                           , metrics=['accuracy'])
            history = model.fit(X train
                               , y train
                                , epochs=NB START EPOCHS
                               , batch size=BATCH SIZE
                               , validation data=(X valid, y valid)
                               , verbose=0)
            return history
        def eval metric(history, metric name):
            metric = history.history[metric name]
            val metric = history.history['val ' + metric name]
            e = range(1, NB START EPOCHS + 1)
            plt.plot(e, metric, 'bo', label='Train ' + metric name)
            plt.plot(e, val metric, 'b', label='Validation ' + metric name)
            plt.legend()
            plt.show()
        def test model(model, X train, y train, X test, y test, epoch stop):
            model.fit(X train
                      , y train
                       , epochs-epoch_stop
                      , batch size=BATCH SIZE
                      , verbose=0)
            results = model.evaluate(X test, y test)
            return results
        def remove stopwords(input text):
            stopwords list = stopwords.words('english')
            # Some words which might indicate a certain sentiment are kept via a whitelist
            whitelist = ["n't", "not", "no"]
            words = input text.split()
            clean words = [word for word in words if (word not in stopwords list or word in whitelist) and len(word) > 1]
            return " ".join(clean words)
```

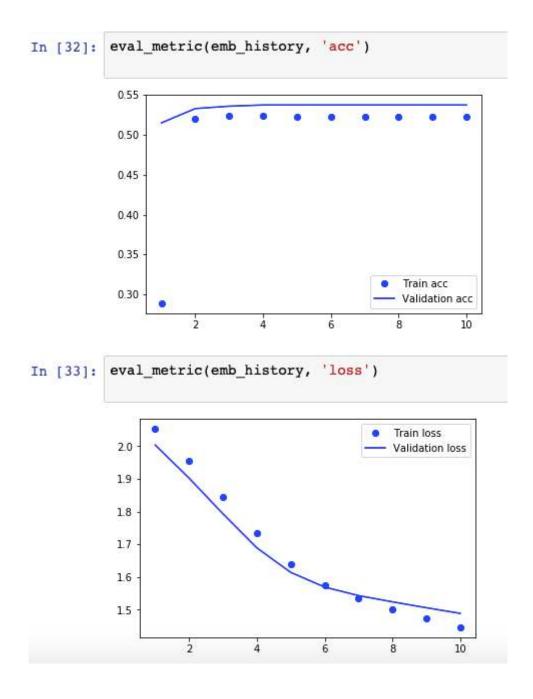
```
return re.sub(r'8\w+', '', input text)
In [9]: import nitk
         nltk.download('stopwords')
         from nltk.corpus import stopwords
         stopwords.words('english')
         df = pd.read_csv('/Users/ritika/Downloads/train/sentiments/LokShobaElc2019Cong-moods.csv')
         df = df.reindex(np.random.permutation(df.index))
         df = df[['tweet', 'mood']]
         df.text = df.tweet.apply(remove stopwords).apply(remove mentions)
         [nltk_data] Downloading package stopwords to
         [nltk data]
                          /Users/ritika/nltk data...
         [nltk data]
                       Package stopwords is already up-to-date!
         /Users/ritika/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:8: UserWarning: Pandas doesn't allow column
         s to be created via a new attribute name - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-a
In [11]: X_train, X_test, Y_train, Y_test = train_test_split(df.tweet, df.mood, test_size=0.1, random_state=37)
         print('# Train data samples:', X train.shape[0])
         print('# Test data samples:', X_test.shape[0])
assert X_train.shape[0] == y_train.shape[0]
         assert X test.shape[0] == y test.shape[0]
         # Train data samples: 6697
         # Test data samples: 745
In [16]: from keras import models
         from keras import layers
         from keras import regularizers
         Using TensorFlow backend.
In [17]: from sklearn.model_selection import train_test_split
         from nltk.corpus import stopwords
         from keras.preprocessing.text import Tokenizer
         from keras.preprocessing.sequence import pad sequences
         from keras.utils.np utils import to categorical
         from sklearn.preprocessing import LabelEncoder
In [19]: NB_WORDS = 10000
         VAL SIZE = 1000
         NB START EPOCHS = 10
         BATCH SIZE = 512
         MAX LEN = 24
         GLOVE DIM = 100
```

• CONVERTING THE TARGET CLASSES TO NUMBERS AND SPLITTING OFF VALIDATION DATA

```
In [22]: X train seq trunc = pad sequences(X train seq, maxlen=NAX_LEN)
         X test sec trunc = pad sequences(X test seq, maxlen=MAX LKN)
In [2]]: X_train_seq_trunc[10] # Example of padded sequence
Out[23]: array(|
                                                                  0, 2440.
                                                                              29.
                   0,
                         0.
                              0.
                                     0.
                 214, 583], dtype=int32}
In [24]: le = LabelEncoder()
         y_train_le = le.fit_transform(y_train)
         y_test_le = le.transform(y_test)
         y train oh - to categorical(y train le)
         y test oh = to categorical(y test le)
In [25]: X train emb, X valid emb, y train emb, y valid emb = train test split(X train seg trunc,
                                                                               y_train_oh, test_size=0.1, rendom_state=37)
         assert X valid emb.shape[0] - y valid emb.shape[0]
         assert X train emb.shape[0] == y train emb.shape[0]
        print( Shape of validation set; , X_valid_emb.shape)
         Shape of validation set: (670, 24)
```

MODELING

```
In [29]: emb model = models.Sequential()
         emb model.add(layers.Embedding(NB WORDS, 8, input length=MAX LEN))
         emb model.add(layers.Flatten())
         emb_model.add(layers.Dense(8, activation='softmax'))
         emb model.summary()
                                       Output Shape
         Layer (type)
                                                                  Param #
         embedding 2 (Embedding)
                                       (None, 24, 8)
                                                                  80000
         flatten 2 (Flatten)
                                       (None, 192)
                                                                  0
         dense 2 (Dense)
                                       (None, 8)
                                                                  1544
         Total params: 81,544
         Trainable params: 81,544
         Non-trainable params: 0
In [30]: emb history = deep model(emb model, X train emb, y train emb, X valid emb, y valid emb)
In [31]: emb history.history['acc'][-1]
Out(31): 0.5229799244382873
```



ACCURACY OF MODEL FOR WORD EMBEDDINGS

The model has an approval exactness of about 52%. The quantity of words in the tweets is fairly low, so this outcome is somewhat great.

By looking at the preparation and approval precision and misfortune, it is seen that the model begins overfitting from epoch 6.

Keras gives an Embedding layer which causes us to prepare explicit word embeddings dependent on our preparation information. It will change over the words in our vocabulary to multidimensional vectors.

CONCLUSION

In the initial segment of this work, tweets were analyzed in our dataset. We broke down the volume of the tweets approaching each day and advocated the crests in the information by giving the course of events of the major political exercises amid India General Elections 2019. It was accounted for that Tuesdays and Wednesdays saw the most elevated number of Tweets as greater part of the exercises were amid weekdays and the action crested especially in the second 50% of the day. It was additionally discovered that we had 815,425 exceptional clients in our dataset. The quantity of one of a kind client for consistently were likewise detailed. It was appeared according to the prevalent view the volume of tweets expanded as races came nearer. The quantity of notices over recent months were appeared for AAP, BJP and Congress, however 8 different gatherings that were dynamic in different states. We additionally investigated the fame of Arvind Kejriwal and Narendra Modi on two distinct parameters and detailed how their political conduct influenced their prevalence on Twitter.

The second piece of the work was concerning the political direction of clients. We utilized 4 approaches for the creating 4 sorts of classifiers. Subsequent to getting 1000 profiles explained we could set up a genuine positive dataset with 613 cases of Pro and 425 occasion of Anti class. The principal approach utilized a client vector that had the TFIDF score for each term. The effectiveness with this strategy for equivalent number of examples was 42.42% for Pro and 37.25% for the Anti classification. We at that point proceeded onward to the second strategy which utilized the hashtags utilized in tweets as highlights for order. This technique improved the effectiveness somewhat yet not as far as possible. To check if the strategies were working right, we attempted 2-class arrangement also, however without much of any result.

The third technique was the utilization of client-based highlights, for example, number of companions and devotees, number of events of AAP, BJP and Congress related words and hashtags. While BJP led the pack in utilizing data analytics and predictive analysis for political purposes, Congress, alongside other national parties was viewed as a late participant in cementing a huge digital database. The 2019 Lok Sabha Election was a prime case of utilizing information

driven strategies to make a viable advanced interface and communication crosswise over India and streaming data to be utilized.

The fourth part of the work was the advancement of the entry that showed the investigation of the tweets of the most recent 24 hours and successfully classified the sentiments of the live streaming Tweet dataset. Elections are a complex, multi-dimensional social and political occasion which can be caught just through an assortment of strategies: this thesis underlines how the various methodologies complete one another and are thusly similarly important.

While anyone thinks about the Indian electoral race, at the national and state levels, they have been ruled, since the 1990s, by study scholars or examiners. The Lokniti based venture of 'Comparative Electoral Ethnography' ought to add to reestablishing some harmony between different kinds of studies. Additionally, scholarly discussions around the logical and political ramifications and impediments of decision considers appear to prompt an assembly: while poll-based studies advance towards a better worry of the sentiments and dispositions of Indian voters, anthropological examinations endeavor to defeat the constraints of hands on work dependent on a solitary, restricted territory.

REFERENCES

- **1.** N. D. Valakunde, M. S. Patwardhan, "Multi-Aspect and Multi-Class Based Document Sentiment Analysis of Educational Data Catering Accreditation Process", *IEEE International Conference on Cloud and Ubiquitous Computing and Emerging Technologies*, 2013.
- 2. Liu Bing, Sentiment Analysis and Opinion Mining, Morgan and Claypool Publishers, May 2012.
- **3.** A. Bifet, G. Holmes, B. Pfahringer, "MOA-TweetReader: real-time analysis in twitter streaming data" in LNCS 6926, Springer-Verlag Berlin Heidelberg, pp. 4660, 2011.
- **4.** Vivek Narayanan, Ishan Arora, Arjun Bhatia, Fast and accurate sentiment classification using an enhanced Naive Bayes model, 2012.
- **5.** Pulkit Kathuria, Kiyoaki Shirai, Example Based Word Sense Disambiguation towards Reading Assistant System The Association for Natural Language Processing, 2012.
- **6.** Farhan Hassan Khan, Saba Bashir, Usman Qamar, "TOM: Twitter opinion mining framework using hybrid classification scheme", *Decision Support Systems*, vol. 57, 2014.
- 7. Xingtong Ge, Xiaofang Jin, Bo Miao, Chenming Liu, Xinyi Wu, "Research on the Key Technology of Chinese Text Sentiment Analysis", *Software Engineering and Service Science* (ICSESS) 2018 IEEE 9th International Conference on, pp. 395-398, 2018.
- **8**. Shubham Kumar Jain, Pardeep Singh, "Systematic Survey on Sentiment Analysis", *Secure Cyber Computing and Communication (ICSCCC) 2018 First International Conference on*, pp. 561-565, 2018.
- **9**. Sneh Paliwal, Sunil Kumar Khatri, Mayank Sharma, "Sentiment Analysis and Prediction Using Neural Networks", *Inventive Research in Computing Applications (ICIRCA) 2018 International Conference on*, pp. 1035-1042, 2018.
- 10. Chacón D, (2013). "Why Big Data Is Important to You and Your Organization"
- **11.** Nasser T and Tariq RS "Big Data Challenges" (2015). Journal of Computer Engineering and Information Technology.
- **12.** Salla-Maaria Laaksonen, et al., Working the fields of big data: Using big-data-augmented online ethnography to study candidate- candidate interaction at election time. Journal of information technology & politics, 2017.

- **13.** Eethany Anee Conway et al., The Rise of Twitter in the Political Campaign: Searching for Intermedia Agenda-Setting Effects in the Presidential Primary. Article in Journal of Computer-Mediated Communication · May 2015.
- **14.** Dubey Gauray, et al., Social media opinion analysis for Indian political diplomats. IEEE 2017.
- **15.** Daniel José Silva Oliveira, et al., Can social media reveal the preferences of voters? A comparison between sentiment analysis and traditional opinion polls, Journal of Information Technology & Politics, 2016.
- **16.** Shubham Goyal., Review Paper on Sentiment Analysis of Twitter Data Using Text Mining and Hybrid Classification Approach. In-ternational Journal of Engineering Development and Research (www.ijedr.org) 2017.
- **17.** Miss. Payal Rajkumar Rathi et al., Big Data Analytics for Social Network--the Base Study, http://www.ijettjournal.org.2016.
- **18.** Gagandeep Jagdev and Amandeep Kaur; Analyzing and Scripting Indian Election strategies using Big Data via Apache Hadoop framework, IEEE 2016.
- **19.** Andy Januar Wicaksono et al., A Proposed Method for Predicting US Presidential Election by Analyzing Sentiment in Social Media, 2nd International Conference on Science in Information Technology, IEEE 2016.
- **20.** Suarez Hernandez A, et al., predicting political mood tendencies based on twitter data.
- **21.** Tsakalidis Adam, et al., predicting elections for multiple countries using twitter and polls. IEEE 2015.
- **22.** Kangan vadim, et al., using twitter sentiment to forecast the 2013 pakistani election and the 2014 indian election. IEEE 2015.
- **23.** E. Sang and J. Bos, "Predicting the 2011 Dutch Senate Election Results with Twitter," Proc. Workshop Semantic Analysis in Social Media, 2012, pp. 53–60.
- **24.** B. O"Connor et al., "From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series," Proc. 4th Int"l AAAI Conf. Web- logs and Social Media
- 25. Twitter Statistics, http://www.statisticbrain.com/twitter-statistics/, Last Updated: 5.7.2013
- **26.** C. Spengler, W. Werth, and R. Sigrist, "360o Touchpoint Man- agement -How important is Twitter for our brand", Marketing Re- view, St. Gallen, 2010.

- **27.** M. Ghiassi, J. Skinner, and D. Zimbra, "Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic arti- ficial neural network", Expert Systems with Applications, Vol. 40, Issue 16, pp 6266-6282, November 2013.
- **28.** Y. Bae and H. Lee, "Sentiment analysis of twitter audiences: Measuring the positive or negative influence of popular twitterers", Journal of the American Society for Information Science and Technology, Vol. 63, Issue 12, pp. 2521-2535, December 2012.
- **29.** Ahuja, Amit; Chhibber, Pradeep (nd) 'Civic Duty, Empowerment and Patronage: Patterns of Political Participation in India', http://www.sscnet.ucla.edu/polisci/cpworkshop/papers/Chhibber.pdf (accessed on 21 November, 2009).
- **30.** Auyero, Javier (2006) 'Introductory Note to Politics under the Microscope: Special Issue on Political Ethnography I', *Qualitative Sociology*, 2, pp. 257-9.
- **31.** Banerjee, Mukulika (2007) 'Sacred Elections', *Economic and Political Weekly*, 28 April, pp. 1556-62. Brass, Paul (1985) *Caste, Faction and Party in Indian Politics. Volume Two: Election Studies*, Delhi: Chanakya Publications.
- **32.** Butler, David; Lahiri, Ashok; Roy, Prannoy (1995) *India Decides. Elections 1952-1995*, Delhi: Books & Things. Chandra, Kanchan (2004) 'Elections as Auctions', *Seminar*, 539. Chandra, Kanchan (2008) 'Why voters in patronage democracies split their tickets: Strategic voting for ethnic parties', *Electoral Studies*, 28, pp. 21-32.
- **33.** Chhibber, Pradeep; Petrocik, John R.K. (1989) 'The Puzzle of Indian Politics: Social Cleavages and the Indian Party System', *British Journal of Political Science*, 19(2), pp. 191-210.
- **34.** Dikshit, S.K. (1993) *Electoral Geography of India, With Special Reference to Sixth and Seventh Lok Sabha Elections*, Varanasi: Vishwavidyalaya Prakashan.
- **35.** Eldersveld, Samuel; Ahmed, Bashiruddin (1978) *Citizens and Politics: Mass Political Behaviour in India*, Chicago: University of Chicago Press.
- **36.** Fauvelle-Aymar, Christine (2008) 'Electoral turnout in Johannesburg: Socio-economic and Political Determinants', *Transformation*, *Critical Perspectives on Southern Africa*, 66/67, pp. 142-67.
- **37.** Hauser, Walter; Singer, Wendy (1986) 'The Democratic Rite: Celebration and Participation in the Indian Elections', *Asian Survey*, 26(9), pp. 941-58.

- **38.** Hermet, Guy; Badie, Bertrand; Birnbaum, Pierre; Braud, Philippe (2001) *Dictionnaire de la science politique et des institutions politiques*, Paris: Armand Colin.
- **39.** Jaffrelot, Christophe (2008) "Why Should We Vote?" The Indian Middle Class and the Functioning of the World's Largest Democracy, in Christophe Jaffrelot & Peter Van der Veer (eds.), *Patterns of Middle Class Consumption in India and China*, Delhi: Sage.
- **40.** Jayal, Niraja Gopal (2001) 'Introduction', in Niraja Gopal Jayal (ed.), *Democracy in India*, Delhi: Oxford University Press, pp. 1-49.
- **41.** Lyngdoh, James Michael (2004) *Chronicle of an Impossible Election: The Election Commission and the 2002 Jammu and Kashmir Assembly Elections*, Delhi: Penguin/Viking.
- **42.** Narain, Iqbal; Pande, K.C.; Sharma, M.L.; Rajpal, Hansa (1978) *Election Studies in India: An Evaluation*, New Delhi: Allied Publishers.
- **43.** Palshikar, Suhas (2007) 'The Imagined Debate between Pollsters and Ethnographers', *Economic and Political Weekly*, 27 October, pp. 24-8.
- **44.** Singer, Wendy (2007) 'A Constituency Suitable for Ladies' And Other Social Histories of Indian Elections,

New Delhi: Oxford University Press.

- **45.** Sundar, Nandini; Deshpande, Satish; Uberoi, Patricia (2000) 'Indian Anthropology and Sociology: Towards a History', *Economic and Political Weekly*, 10 June, pp. 1998-2002.
- **46.** Yadav, Yogendra (2000) 'Understanding the Second Democratic Upsurge: Trends of Bahujan Participation in Electoral Politics in the 1990s', in Francine R. Frankel; Zoya Hasan; Rajeev Bhargava; Balveer Arora (eds.), *Transforming India: Social and Political Dynamics of Democracy*, Delhi: Oxford University Press.

SYNOPSIS

The essential goal of the analysis is to get a precise estimating model for the Lok Sabha Election 2019. To distinguish a dependable model, artificial neural networks (ANN) and support vector regression (SVR) models are thought about dependent on some predetermined exhibition measures. Besides, six autonomous factors, for example, GDP, job rate, the hopeful's endorsement rate, and others are considered in a stepwise relapse to distinguish noteworthy factors. The candidate's endorsement rate is distinguished as the most critical variable, in light of which eight different factors are recognized and considered in the model improvement.

Preprocessing techniques are connected to set up the information for the learning calculations. The proposed methodology essentially expands the exactness of the model up to 50%. The learning calculations (ANN and SVR) demonstrated to be better than direct relapse dependent on every technique's determined exhibition measures. The proposed methodology essentially expands the precision of the gauge for casting a ballot conduct and gathering execution.

Expanding the exactness of the achieved conjectures is another exploration objective. In addition, expository models are desired to give figures and distinctive used learning algorithms are additionally analyzed dependent on some predetermined exhibition measures.

The contrasts between artificial neural systems (ANN) and support vector regression (SVR) are researched additionally dependent on two proportions of errors: mean absolute prediction error (MAPE), and root-mean-squared error (RMSE). Exploring the effects of data mining procedures in expanding determining exactness is another goal of this experimental analysis, where two major datasets are compared utilizing every attribute.

To begin with, the characterization of the data, by a procedure of unsupervised learning as the gathering, clustering, brings the find of groups that are extraordinary yet the individual is equivalent among themselves as noted (Vega, 2012) In the philosophy of data mining.

The Clustering methods, is alluded in English as gathering, are strategies which are utilized to aggregate a progression of things. Clustering is utilized in insights and science. The strategies to manage are: the progressive technique since it is an exploratory instrument intended to uncover the normal gatherings inside a lot of information that would somehow isn't clear. It is helpful when you need to bunch few items, might be cases or factors, in the event that you need to arrange cases

or look at connections between the factors. The target of this thesis was to determine an anticipating model for the Lok Sabha elections. Deep Learning Algorithms and data mining strategies were used towards this target. In addition, free factors, for example, GDP, employment ratio, individual salary, changes in the votes of the occupant party in the last electoral battle, and the candidate's activity endorsement were considered. The essentialness of every variable was dictated by applying stepwise regression. Thus, all factors relating from the party's activity endorsement rate were discarded.

The principle hypothesis was that the electoral decision reflects the public sentiment towards a party candidate. After the stepwise regression is performed, 7 factors identified with sentiment of public were considered to build up the anticipating model. By applying two preprocessing techniques, data transformation and clustering, the data was set up for the learning algorithm. The algorithm of bagging and boosting were applied on the dataset to reduce the variance of the data while significantly keeping the bias untouched. The primary standard behind the model is that a gathering of feeble learners meet up to frame a solid learned model. Bagging (Bootstrap Aggregation) is utilized when we will likely lessen the change of a decision tree. Here thought is to make a few subsets of data from training test picked arbitrarily with substitution.

Boosting was applied on the data set to generate the variation of prediction rule. Upon achieving a desirable strength of the prediction rule we declared the model fit for testing. Other algorithms like Classification, 3 types of regression algorithms and LSTM Time Series Forecasting was taken into account. A model was successfully trained and tested for sentiment analysis on live streaming data to justify both negative and positive tweets.

An audit of clustering algorithms calculations, can be referenced by (Xu, 2005) and examine distinctive calculation. The progressive technique is worked by a group of trees or various leveled hierarchical clusters. Arranged in agglomerative and disruptive. The initially starts with a group and after at least two comparative clusters. The second starts with a cluster containing every one of the data points and recursively partitions the gathering generally proper. The procedure proceeds and stops until the rule is improved

The election results are not so much unplanned, completely eased by past events and happenings, and that quite a bit of what occurs in neighborhood enables us to think about the potential situations of the nearby election result. The essential goal of this experiment is to

demonstrate and figure the Lok Sabha 2019 decision by means of the utilization of learning calculations. Political and financial factors are used in the model, and noteworthy factors are distinguished through further examination and factual systems. The reliant variable is characterized as the discretionary votes of the occupant party. The candidate party is considered as the important variable, since it shows additionally related factors such the party's endorsement rate.

It is imperative to examine the connection between the verifiable pattern of the vote and the discretionary aftereffects of a particular election; it is significant in light of the fact that it enables us to make expectations, which can, in great measure, sharpening political candidates and voters about the potential consequences of the constituent voting pattern.

In the initial segment of our work, we investigated the tweets in our dataset. We dissected the volume of the tweets approaching each day and defended the peaks in the information by giving the course of events of the major political exercises amid India General Elections 2019. It was accounted for that Tuesdays and Wednesdays saw the most astounding number of Tweets as larger part of the exercises were amid weekdays and the action topped especially in the second 50% of the day. The quantity of unique account was additionally detailed. It was appeared according to the prevalent view the volume of tweets expanded as decisions came nearer. The quantity of notices over recent months were appeared for AAP, BJP and Congress, yet 8 different gatherings that were dynamic in different states. We additionally dissected the prevalence of Congress and BJP on several distinct parameters and revealed how their political conduct influenced their notoriety on Twitter.

The second piece of the work was concerning the political direction of clients. We utilized 4 approaches for the creating 2 sorts of classifiers. In the wake of getting 1000 profiles commented on we could set up a genuine positive dataset Pro of Anti classification. The principal approach utilized a client vector that had the TFIDF score for each term. The last strategy we attempted was the network detection algorithm. So, we can close our data analysis on conclusion that BJP and its Prime Ministerial competitor Narendra Modi were the most noteworthy gainers in the fields of notices and ubiquity on Twitter.

Elections are a complex, multi-dimensional social and political occasion which can be caught just through an assortment of strategies: this thesis underlines how the various methodologies complete one another and are thusly similarly important. While Indian electoral

race thinks about, at any rate at the national and state levels, have been ruled, since the 1990s, by study examine, the Lokniti based venture of 'Comparative Electoral Ethnography' ought to add to reestablishing some harmony between different kinds of studies. Additionally, scholarly discussions around the logical and political ramifications and impediments of decision considers appear to prompt an assembly: while poll-based studies advance towards a better worry of the sentiments and dispositions of Indian voters, anthropological examinations endeavor to defeat the constraints of hands on work dependent on a solitary, restricted territory.